• Title/Summary/Keyword: Remote sensing technique

Search Result 729, Processing Time 0.027 seconds

A Experimental Study on the 3-D Image Restoration Technique of Submerged Area by Chung-ju Dam (충주댐 수몰지구의 3차원 영상복원 기법에 관한 실험적 연구)

  • 연상호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • It will be a real good news fer the people who were lost their hometown by the construction of a large dam to be restored to the farmer state. Focused on Cheung-pyung around where most part were submerged by the Chungju large Dam founded in eurly 1980s, It used remote sensing image restoration Technique in this study in order to restore topographical features before the flood with stereo effects. We gathered comparatively good satellite photos and remotely sensed digital images, then its made a new fusion image from these various satellite images and the topographical map which had been made before the water filled by the DAM. This task was putting together two kinds of different timed images. And then, we generated DEM including the outskirts of that area as matching current contour lines with the map. That could be a perfect 3D image of test areas around before when it had been water filled by making perspective images from all directions included north, south, east and west, fer showing there in 3 dimensions. Also, for close range visiting made of flying simulation can bring to experience their real space at that time. As a result of this experimental task, it made of new fusion images and 3-D perspective images and simulation live images by remotely sensed photos and images, old paper maps about vanished submerged Dam areas and gained of possibility 3-D terrain image restoration about submerged area by large Dam construction.

Objectification and validation of typhoon center intensity analysis based on MTSAT-1R satellite's infrared images (MTSAT-1R 위성 적외영상기반 태풍강도분석 객관화와 검증)

  • Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Lee, Hee-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.219-223
    • /
    • 2007
  • GMS(Geostational Meteorological Satellite), GOES(Geostationary Operational Environmental Satellite), MTSAT(Multi-Funcional Transport Satellite) 등의 정지기상위성은 거의 매시간 기상상황을 감시하고 태풍정보를 실시간 분석할 수 있어 드보락(Dvorak, 1975)등에 의해 이를 이용한 가시영상이나 적외영상기반의 태풍중심강도를 분석기법(드보락의 VIS/IR 분석법) 및 적외강조영상 분석기법(드보락의 EIR 분석법)이 개발되었다(Dvorak,1975, 1984). 그러나 주관적인 드보락의 VIS/IR 분석 법 및 EIR 분석법에 의한 결과는 분석자마다 다를 수 있고,절차 또한 복잡하여 시급성을 요하는 태풍 분석에서 취약점으로 지적되어 왔다. 이러한 주관적 방법의 한계를 극복하기 위하여 디지럴화된 영상과 자동 객관화된 알고리즘을 적용하는 객관 드보락 기법 (Advanced Objective Dvorak Technique, 이하 AODT)이 개발되었고(Velden et al, 1998), Zehr(1989)에 의해 비행기 관측자료등을 통해 보정되고 있다. 기상청에서는 2001 년부터 GMS 위성 관측영상을 이용하여 태풍의 중심위치를 분석하고,태풍강도를 정량화하기 위해 주관 드보락 기법 (Subjective Dvorak Technique 이하 SDT)을 이용하여 태풍중심위치와 강도정보를 실시간 예보관 및 일반인에게 제공하고 있다. 그러나 주관적인 드보락 기법이 분석자에 따라 다른 결과가 도출 될 수 있어, 이를 보완하기 위해 QuikSCAT 해상풍 관측자료, 정지 및 극 궤도위성자료를 활용한 해수면온도 둥 위성 분석자료와 기타 관측자료를 참조하고 있다. 정지기상위성자료를 이용한 드보락기법은 적외영상만으로 태풍중심 위치와 강도를 분석할 수 있는 장점 외에 앞에서 열거한 몇 가지 극복되지 못한 한계도 있으나,SSM/I 둥 기타 위성자료의 관측시간대와 분석정보 부족 등으로 정지기상위성자료를 이용한 드보락 기법을 대체할만한 현업용 분석기법이 개발되지 못했다. 기상청에서는 기존의 태풍분석업무를 개선하기 위해서 2005년부터 AODT를 도입하여 그 성능을 시험분석하고, 2006년 6월부터 AODT를 현업화하여 실시간 태풍강도분석 에 활용하였으며 2006년 제 3호 태풍 에위니아(EWINIAR)부터 두리안(DURlAN)까지 19개 태풍 434개 시간대자료를 분석한 결과 SDT 강도분석결과와 0.90의 상관도를 보였다. 또한 AODT 알고리즘이 기본적으로 대서양에서 발생하는 태풍에 초점을 두고 개발되어 북서태평양에서 발생하는 태풍에 직접 적용하기에는 어려움이 있는 것으로 알려져 있으므로(Velden et al. 1998), 이의 개선을 위하여 태풍강도지수인 SDT CI(Current Intensity) 수와 AODT CI 수간의 통계적 관계를 밝히고 신경망을 이용한 비선형 주성분 분석 (Hieh,2004)등을 통해 AODT CI 수 보정 시도를 하였다. 이와 더불어, 기상청은 근원적 객관 알고리즘 개선을 위해 AODT 자체 알고리즘 분석과 위성자료 DB 구축 동의 노력을 기울이고 있다.

  • PDF

A Hybrid Dasymetric Mapping for Population Density Surface using Remote Sensing Data (원격탐사자료를 바탕으로 인구밀도 분포 작성을 위한 하이브리드 대시메트릭 지도법)

  • Kim, Hwa-Hwan;Choi, Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.1
    • /
    • pp.67-80
    • /
    • 2011
  • Choropleth mapping of population distribution is based on the assumption that people are uniformly distributed throughout each enumeration unit. Dasymetric mapping technique improves choropleth mapping by refining spatially aggregated data with residential information. Further, pycnophylactic interpolation can upgrade dasymetric mapping by considering population distribution of neighboring areas, while preserving the volumes of original units. This study proposed a combined solution of dasymetric mapping and pycnophylactic interpolation to improve the accuracy of population density distribution. Specifically, the dasymetric method accounts for the spatial distribution of population within each census unit, while pycnophylactic interpolation considers population distribution of neighboring area. This technique is demonstrated with 1990 census data of the Athens, GA. with land use land cover information derived from remotely-sensed imagery for the areal extent of populated areas. The results are evaluated by comparison between original population counts of smaller census units (census block groups) and population counts of the grid map built from larger units (census tracts) aggregated to the same areal units. The estimated populations indicate a satisfactory level of accuracy. Population distribution acquired by the suggested method can be re-aggregated to any type of geographic boundaries such as electoral boundaries, school districts, and even watershed for a variety of applications.

Comparison of Forest Growing Stock Estimates by Distance-Weighting and Stratification in k-Nearest Neighbor Technique (거리 가중치와 층화를 이용한 최근린기반 임목축적 추정치의 정확도 비교)

  • Yim, Jong Su;Yoo, Byung Oh;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.374-380
    • /
    • 2012
  • The k-Nearest Neighbor (kNN) technique is popularly applied to assess forest resources at the county level and to provide its spatial information by combining large area forest inventory data and remote sensing data. In this study, two approaches such as distance-weighting and stratification of training dataset, were compared to improve kNN-based forest growing stock estimates. When compared with five distance weights (0 to 2 by 0.5), the accuracy of kNN-based estimates was very similar ranged ${\pm}0.6m^3/ha$ in mean deviation. The training dataset were stratified by horizontal reference area (HRA) and forest cover type, which were applied by separately and combined. Even though the accuracy of estimates by combining forest cover type and HRA- 100 km was slightly improved, that by forest cover type was more efficient with sufficient number of training data. The mean of forest growing stock based kNN with HRA-100 and stratification by forest cover type when k=7 were somewhat underestimated ($5m^3/ha$) compared to statistical yearbook of forestry at 2011.

Inflow Estimation into Chungju Reservoir Using RADAR Forecasted Precipitation Data and ANFIS (RADAR 강우예측자료와 ANFIS를 이용한 충주댐 유입량 예측)

  • Choi, Changwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.857-871
    • /
    • 2013
  • The interest in rainfall observation and forecasting using remote sensing method like RADAR (Radio Detection and Ranging) and satellite image is increased according to increased damage by rapid weather change like regional torrential rain and flash flood. In this study, the basin runoff was calculated using adaptive neuro-fuzzy technique, one of the data driven model and MAPLE (McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as one of the input variables. The flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated. Six rainfall events occurred at flood season in 2010 and 2011 in Chungju Reservoir basin were used for the input data. The flood estimation results according to the rainfall data used as training, checking and testing data in the model setup process were compared. The 15 models were composed of combination of the input variables and the results according to change of clustering methods were compared and analysed. From this study was that using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation. The model using MAPLE forecasted precipitation data showed relatively better result at inflow estimation Chungju Reservoir.

Spatial Anaylsis of Agro-Environment of North Korea Using Remote Sensing I. Landcover Classification from Landsat TM imagery and Topography Analysis in North Korea (위성영상을 이용한 북한의 농업환경 분석 I. Landsat TM 영상을 이용한 북한의 지형과 토지피복분류)

  • Hong, Suk-Young;Rim, Sang-Kyu;Lee, Seung-Ho;Lee, Jeong-Cheol;Kim, Yi-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.120-132
    • /
    • 2008
  • Remotely sensed images from a satellite can be applied for detecting and quantifying spatial and temporal variations in terms of landuse & landcover, crop growth, and disaster for agricultural applications. The purposes of this study were to analyze topography using DEM(digital elevation model) and classify landuse & landcover into 10 classes-paddy field, dry field, forest, bare land, grass & bush, water body, reclaimed land, salt farm, residence & building, and others-using Landsat TM images in North Korea. Elevation was greater than 1,000 meters in the eastern part of North Korea around Ranggang-do where Kaemagowon was located. Pyeongnam and Hwangnam in the western part of North Korea were low in elevation. Topography of North Korea showed typical 'east-high and west-low' landform characteristics. Landcover classification of North Korea using spectral reflectance of multi-temporal Landsat TM images was performed and the statistics of each landcover by administrative district, slope, and agroclimatic zone were calculated in terms of area. Forest areas accounted for 69.6 percent of the whole area while the areas of dry fields and paddy fields were 15.7 percent and 4.2 percent, respectively. Bare land and water body occupied 6.6 percent and 1.6 percent, respectively. Residence & building reached less than 1 percent of the country. Paddy field areas concentrated in the A slope ranged from 0 to 2 percent(greater than 80 percent). The dry field areas were shown in the A slope the most, followed by D, E, C, B, and F slopes. According to the statistics by agroclimatic zone, paddy and dry fields were mainly distributed in the North plain region(N-6) and North western coastal region(N-7). Forest areas were evenly distributed all over the agroclimatic regions. Periodic landcover analysis of North Korea based on remote sensing technique using satellite imagery can produce spatial and temporal statistics information for future landuse management and planning of North Korea.

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.

Evaluation on Spectral Analysis in ALOS-2 PALSAR-2 Stripmap-ScanSAR Interferometry (ALOS-2 Stripmap-ScanSAR 위상간섭기법에서의 스펙트럼 분석 평가)

  • Park, Seo-Woo;Jung, Seong-Woo;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.351-363
    • /
    • 2020
  • It is well known that alluvial sediment located in coastal region has been easily affected by geohazard like ground subsidence, marine or meteorological disasters which threaten invaluable lives and properties. The subsidence is a sinking of the ground due to underground material movement that mostly related to soil compaction by water extraction. Thus, continuous monitoring is essential to protect possible damage from the ground subsidence in the coastal region. Radar interferometric application has been widely used to estimate surface displacement from phase information of synthetic aperture radar (SAR). Thanks to advanced SAR technique like the Small BAseline Subset (SBAS), a time-series of surface displacement could be successfully calculated with a large amount of SAR observations (>20). Because the ALOS-2 PALSAR-2 L-band observations maintain higher coherence compared with other shorter wavelength like X- or C-band, it has been regarded as one of the best resources for Earth science. However, the number of ALOS-2 PALSAR-2 observations might be not enough for the SBAS application due to its global monitoring observation scenario. Unfortunately, the number of the ALOS-2 PALSAR-2 Stripmap images in area of our interest, Busan which located in the Southeastern Korea, is only 11 which is insufficient to apply the SBAS time-series analysis. Although it is common that the radar interferometry utilizes multiple SAR images collected from same acquisition mode, it has been reported that the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application could be possible under specific acquisition mode. In case that we can apply the Stripmap-ScanSAR interferometry with the other 18 ScanSAR observations over Busan, an enhanced time-series surface displacement with better temporal resolution could be estimated. In this study, we evaluated feasibility of the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application using Gamma software considering differences of chirp bandwidth and pulse repetition frequency (PRF) between two acquisition modes. In addition, we analyzed the interferograms with respect to spectral shift of radar carrier frequency and common band filtering. Even though it shows similar level of coherence regardless of spectral shift in the radar carrier frequency, we found periodic spectral noises in azimuth direction and significant degradation of coherence in azimuth direction after common band filtering. Therefore, the characteristics of spectral bandwidth in the range and azimuth direction should be considered cautiously for the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometry.

Development and Validation of Korean Composit Burn Index(KCBI) (한국형 산불피해강도지수(KCBI)의 개발 및 검증)

  • Lee, Hyunjoo;Lee, Joo-Mee;Won, Myoung-Soo;Lee, Sang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.163-174
    • /
    • 2012
  • CBI(Composite Burn Index) developed by USDA Forest Service is a index to measure burn severity based on remote sensing. In Korea, the CBI has been used to investigate the burn severity of fire sites for the last few years. However, it has been an argument on that CBI is not adequate to capture unique characteristics of Korean forests, and there has been a demand to develop KCBI(Korean Composite Burn Index). In this regard, this study aimed to develop KCBI by adjusting the CBI and to validate its applicability by using remote sensing technique. Uljin and Youngduk, two large fire sites burned in 2011, were selected as study areas, and forty-four sampling plots were assigned in each study area for field survey. Burn severity(BS) of the study areas were estimated by analyzing NDVI from SPOT images taken one month later of the fires. Applicability of KCBI was validated with correlation analysis between KCBI index values and NDVI values and their confusion matrix. The result showed that KCBI index values and NDVI values were closely correlated in both Uljin (r = -0.54 and p<0.01) and Youngduk (r = -0.61 and p<0.01). Thus this result supported that proposed KCBI is adequate index to measure burn severity of fire sites in Korea. There was a number of limitations, such as the low correlation coefficients between BS and KCBI and skewed distribution of KCBI sampling plots toward High and Extreme classes. Despite of these limitations, the proposed KCBI showed high potentials for estimating burn severity of fire sites in Korea, and could be improved by considering the limitations in further studies.

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.