• Title/Summary/Keyword: Remote sensing algorithm system

Search Result 235, Processing Time 0.024 seconds

Automatic Generation of GCP Chips from High Resolution Images using SUSAN Algorithms

  • Um Yong-Jo;Kim Moon-Gyu;Kim Taejung;Cho Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.220-223
    • /
    • 2004
  • Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.

  • PDF

RAINFALL ESTIMATION OVER THE TAIWAN ISLAND FROM TRMM/TMI DATA DURING THE TYPHOON SEASON

  • Chen, W-J;Tsai, M-D;Wang, J-L;Liu, G-R;Hu, J-C;Li, C-C
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.930-933
    • /
    • 2006
  • A new algorithm for satellite microwave rainfall retrievals over the land of Taiwan using TMI (TRMM Microwave Imager) data on board TRMM (Tropical Rainfall Measuring Mission) satellite is described in this study. The scattering index method (Grody, 1991) was accepted to develop a rainfall estimation algorithm and the measurements from Automatic Rainfall and Meteorological Telemetry System (ARMTS) were employed to evaluate the satellite rainfall retrievals. Based on the standard products of 2A25 derived from TRMM/PR data, the rainfall areas over Taiwan were divided into convective rainfall area and stratiform rainfall areas with/without bright band. The results of rainfall estimation from the division of rain type are compared with those without the division of rain type. It is shown that the mean rainfall difference for the convective rain type is reduced from -6.2mm/hr to 1.7mm/hr and for the stratiform rain type with bright band is decreased from 10.7 mm/hr to 2.1mm/hr. But it seems not significant improvement for the stratiform rain type without bright band.

  • PDF

TDES CODER USING SSE2 TECHNOLOGY

  • Koo, In-Hoi;Kim, Tae-Hoon;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.114-117
    • /
    • 2007
  • DES is an improvement of the algorithm Lucifer developed by IBM in the 1977. IBM, the National Security Agency (NSA) and the National Bureau of Standards (NBS now National Institute of Standards and Technology NIST) developed the DES algorithm. The DES has been extensively studied since its publication and is the most widely used symmetric algorithm in the world. But nowadays, Triple DES (TDES) is more widely used than DES especially in the application in case high level of data security is required. Even though TDES can be implemented based on standard algorithm, very high speed TDES codec performance is required to process when encrypted high resolution satellite image data is down-linked at high speed. In this paper, Intel SSE2 (Streaming SIMD (Single-Instruction Multiple-Data) Extensions 2 of Intel) is applied to TDES Decryption algorithm and proved its effectiveness in the processing time reduction by comparing the time consumed for two cases; original TDES Decryption and TDES Decryption with SSE2

  • PDF

Application of Ray Following Algorithm to High Resolution Satellite Image Simulation

  • Shin, Dong-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.559-564
    • /
    • 2002
  • This paper describes a new algorithm named as ray following algorithm which is applied for high-resolution satellite image simulation. The problems of the conventional ray tracing algorithm are pointed out especially when terrain elevations vary abruptly. The proposed algorithm follows the directional ray vector sequentially and thoroughly in order to determine the crossing point of the ray with the terrain surface. This way of sequential height comparison method is regarded as the only way to obtain accurate surface cross-section when a highly variant digital surface model is used. The experimental results show and compare the validities of the conventional and proposed algorithms.

  • PDF

Moon Phase based Threshold Determination for VIIRS Boat Detection

  • Kim, Euihyun;Kim, Sang-Wan;Jung, Hahn Chul;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.69-84
    • /
    • 2021
  • Awareness of boats is a main issue in areas of fishery management, illegal fishing, and maritime traffic, etc. For the awareness, Automatic Identification System (AIS) and Vessel-Pass System (V-PASS) have been widely used to collect the boat-related information. However, only using these systems makes it difficult to collect the accurate information. Recently, satellite-based data has been increasingly used as a cooperative system. In 2015, U.S. National Oceanic and Atmospheric Administration (NOAA) developed a boat detection algorithm using Visible Infrared Imaging Radiometer Suite (VIIRS) Day & Night Band (DNB) data. Although the detections have been widely utilized in many publications, it is difficult to estimate the night-time fishing boats immediately. Particularly, it is difficult to estimate the threshold due to the lunar irradiation effect. This effect must be corrected to apply a single specific threshold. In this study, the moon phase was considered as the main frequency of this effect. Considering the moon phase, relational expressions are derived and then used as offsets for relative correction. After the correction, it shows a significant reduction in the standard deviation of the threshold compared to the threshold of NOAA. Through the correction, this study can set a constant threshold every day without determination of different thresholds. In conclusion, this study can achieve the detection applying the single specific threshold regardless of the moon phase.

The Characteristics of Visible Reflectance and Infra Red Band over Snow Cover Area (적설역에서 나타나는 적외 휘도온도와 반사도 특성)

  • Yeom, Jong-Min;Han, Kyung-Soo;Lee, Ga-Lam
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.193-203
    • /
    • 2009
  • Snow cover is one of the important parameters since it determines surface energy balance and its variation. To classify snow and cloud from satellite data is very important process when inferring land surface information. Generally, misclassified cloud and snow pixel can lead directly to error factor for retrieval of surface products from satellite data. Therefore, in this study, we perform algorithm for detecting snow cover area with remote sensing data. We just utilize visible reflectance, and infrared channels rather than using NDSI (Normalized Difference Snow Index) which is one of optimized methods to detect snow cover. Because COMS MI (Meteorological Imager) channels doesn't include near infra-red, which is used to produce NDSI. Detecting snow cover with visible channel is well performed over clear sky area, but it is difficult to discriminate snow cover from mixed cloudy pixels. To improve those detecting abilities, brightness temperature difference (BTD) between 11 and 3.7 is used for snow detection. BTD method shows improved results than using only visible channel.

Spatio- Temporal Join for Trajectory of Moving Objects in the Moving Object Database

  • Lee Jai-Ho;Nam Kwang-Woo;Kim Kwang-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.287-290
    • /
    • 2004
  • In the moving object database system, spatiotemporal join is very import operation when we process join moving objects. Processing time of spatio-temporal join operation increases by geometric progression with numbers of moving objects. Therefore efficient methods of spatio-temporal join is essential to moving object database system. In this paper, we propose spatio-temporal join algorithm with TB-Tree that preserves trajectories of moving objects, and show result of test. We first present basic algorithm, and propose cpu-time tunning algorithm and IO-time tunning algorithm. We show result of test with data set created by moving object generator tool.

  • PDF

COMPARISON OF ATMOSPHERIC CORRECTION ALGORITHMS FOR DERIVING SEA SURFACE TEMPERATURE AROUND THE KOREAN SEA AREA USING NOAA/AVHRR DATA

  • Yoon, Suk;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.518-521
    • /
    • 2007
  • To retrieve Sea Surface Temperature(SST) from NOAA-AVHRR imagery the spilt window atmospheric correction algorithm is generally used. Recently, there have been various new algorithms developed to process these data, namely the variable-coefficient split-window, the R54 transmittance-ratio method, fixed-coefficient nonlinear algorithm, dynamic water vapour (DWV) correction method, Dynamic Water Vapour and Temperature algorithm (DWVT). We used MCSST (Multi-Channel Sea surface temperature) and NLSST(Non linear sea surface temperature) algorithms in this study. The study area is around the Korea sea area (Yellow Sea). We compared and analyzed with various methods by applying each Ocean in-situ data and satellite data. The primary aim of study is to verify and optimize algorithms. Finally, this study proposes an optimized algorithm for SST retrieval.

  • PDF

Extraction of Ground Control Point (GCP) from SAR Image

  • Hong, S.H.;Lee, S.K.;Won, J.S.;Jung, H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1058-1060
    • /
    • 2003
  • A ground control point (GCP) is a point on the surface of Earth where image coord inates and map coordinates can be identified. The GCP is useful for the geometric correction of systematic and unsystematic errors usually contained in a remotely sensed data. Especially in case of synthetic aperture radar (SAR) data, it has serious geometric distortions caused by inherent side looking geometry. In addition, SAR images are usually severely corrupted by speckle noises so that it is difficult to identify ground control points. We developed a ground point extraction algorithm that has an improved capability. An application of radargrammetry to Daejon area in Korea was studied to acquire the geometric information. For the ground control point extraction algorithm, an ERS SAR data with precise Delft orbit information and rough digital elevation model (DEM) were used. We analyze the accuracy of the results from our algorithm by using digital map and GPS survey data.

  • PDF

Depth-based Correction of Side Scan Sonal Image Data and Segmentation for Seafloor Classification (수심을 고려한 사이드 스캔 소나 자료의 보정 및 해저면 분류를 위한 영상분할)

  • 서상일;김학일;이광훈;김대철
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.133-150
    • /
    • 1997
  • The purpose of this paper is to develop an algorithm of classification and interpretation of seafloor based on side scan sonar data. The algorithm consists of mosaicking of sonar data using navigation data, correction and compensation of the acouctic amplitude data considering the charateristics of the side scan sonar system, and segmentation of the seafloor using digital image processing techniques. The correction and compensation process is essential because there is usually difference in acoustic amplitudes from the same distance of the port-side and the starboard-side and the amplitudes become attenuated as the distance is increasing. In this paper, proposed is an algorithm of compensating the side scan sonar data, and its result is compared with the mosaicking result without any compensation. The algorithm considers the amplitude characteristics according to the tow-fish's depth as well as the attenuation trend of the side scan sonar along the beam positions. This paper also proposes an image segmentation algorithm based on the texture, where the criterion is the maximum occurence related with gray level. The preliminary experiment has been carried out with the side scan sonar data and its result is demonstrated.