• Title/Summary/Keyword: Remote controlled measuring system

Search Result 13, Processing Time 0.018 seconds

Implement of Web-based Remote Monitoring System of Smart Greenhouse (스마트 온실 통합 모니터링 시스템 구축)

  • Dong Eok, Kim;Nou Bog, Park;Sun Jung, Hong;Dong Hyeon, Kang;Young Hoe, Woo;Jong Won, Lee;Yul Kyun, Ahn;Shin Hee, Han
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Growing agricultural products in greenhouses controlled by creating suitable climatic conditions and root zone of crop has been an important research and application subject. Appropriate environmental conditions in greenhouse are necessary for optimum plant growth improved crop yields. This study aimed to establish web-based remote monitoring system which monitors crops growth environment and status of crop on a real-time basis by applying to greenhouses IT technology connecting greenhouse equipment such as temperature sensors, soil sensors, crop sensors and camera. The measuring items were air temperature, relative humidity, solar radiation, CO2 concentration, EC and pH of nutrient solution, medium temperature, EC of medium, water content of medium, leaf temperature, sap flow, stem diameter, fruit diameter, etc. The developed greenhouse monitoring system was composed of the network system, the data collecting device with sensors, and cameras. Remote monitoring system was implemented in a server/client environment. Information on greenhouse environment and crops is stored in a database. Items on growth and environment is extracted from stored information, could be compared and analyzed. So, A integrated monitoring system for smart greenhouse would be use in application practice and understanding the environment and crop growth for smart greenhouse management. sap flow, stem diameter and pant-water relations

Design and Manufacture of Laser Tracking System for Measuring Position Accuracy of Robots (로봇의 위치 정밀도 측정을 위한 LTS의 설계 및 제작)

  • Hwang, Sung-Ho;Lee, Ho-Gil;Park, Gyeong-Rak;Kim, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.518-522
    • /
    • 2001
  • The main problem of the calibration of robots is to measure the position and orientation of a robot end effector. The calibration methods can be used as tool to improve the accuracy of robots without change of the arm or control architecture or robots. But such calibration methods require accurate measurements. Dynamic measurement of position and orientation provides a solution for this problem and improves dynamic accuracy by dynamic calibration of robots. This paper describes the development of the laser tracking system capable of determining the static and dynamic performance of industrial robots. The structure and systems components are presented and basic experimental results are included to demonstrated the instrument performance. The system can be applied to the remote controlled mobile robots as well s the calibration of robots.

  • PDF

A Study on Operation Control Technology Required for Introduction of Intelligent Sewage Treatment Plant (스마트 하수처리장 도입에 필요한 운전제어기술에 관한 연구)

  • Lee, Jiwon;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • Smart sewage treatment plant means creating a safe and clean water environment by establishing an ICT-based real-time monitoring, remote control management and intelligent system for the entire sewage treatment process. The core technology of such a smart sewage treatment plant can be operation control technology using measuring instruments. This research team analyzed and suggested the operation control technologies necessary for the establishment of the intelligent business by referring to the intelligent research projects of the sewage treatment plant in progress in Korea. As a result of the analysis, a total of six removal technologies were presented, including control by scale, reflow water control, linked treated water control, chemical quantity control, winter operation control, and total organic carbon control. By size, standards that can be classified into small and medium-sized large-scale are presented, and in the case of reflow water control, the location of water quality and flow sensors capable of managing reflow water is suggested. In the case of the linked treated water control, the influence and control points of the linked treated water on the sewage treatment plant were presented, and in the case of the chemical injection volume control, a system capable of optimizing the amount of chemical injection according to the introduction of an intelligent sewage treatment plant was presented. In the case of winter operation, the sensors and pumps to be controlled are suggested when considering the decrease in nitrification due to the decrease in water temperature. In the case of total organic carbon control, an interlocking system considering the total amount of pollution in the future was proposed. These operation control scenarios are expected to be used as basic data to be used in intelligent sewage treatment algorithms and scenarios in the future.