• Title/Summary/Keyword: Remote Monitoring

Search Result 2,201, Processing Time 0.033 seconds

Automatic Detection Approach of Ship using RADARSAT-1 Synthetic Aperture Radar

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Ship detection from satellite remote sensing is a crucial application for global monitoring for the purpose of protecting the marine environment and ensuring marine security. It permits to monitor sea traffic including fisheries, and to associate ships with oil discharge. An automatic ship detection approach for RADARSAT Fine Synthetic Aperture Radar (SAR) image is described and assessed using in situ ship validation information collected during field experiments conducted on August 6, 2004. Ship detection algorithms developed here consist of five stages: calibration, land masking, prescreening, point positioning, and discrimination. The fine image was acquired of Ulsan Port, located in southeast Korea, and during the acquisition, wind speeds between 0 m/s and 0.4 m/s were reported. The detection approach is applied to anchoring ships in the anchorage area of the port and its results are compared with validation data based on Vessel Traffic Service (VTS) radar. Our analysis for anchoring ships, above 68 m in length (LOA), indicates a 100% ship detection rate for the RADARSAT single beam mode. It is shown that the ship detection performance of SAR for smaller ships like barge could be higher than the land-based radar. The proposed method is also applied to estimate the ship's dimensions of length and breadth from SAR radar cross section(RCS), but those values were comparatively higher than the actual sizes because of layover and shadow effects of SAR.

  • PDF

The Study of Thermal Effect Suppression and Wavelength Dependence of Azobenzene-coated FBG for UV Sensing Application (UV광 측정용 아조벤젠 코팅된 FBG의 열적 효과 제거 및 파장 의존성에 대한 연구)

  • Choi, Dong-Seok;Kim, Hyun-Kyoung;Ahn, Tae-Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.67-71
    • /
    • 2011
  • In the paper, we have demonstrated an azobenzene-coated fiber Bragg grating (FBG) for monitoring ultraviolet light (UV) intensity in remote measurement. The elasticity of the coated azobenzene polymer is changed by the UV light, which induces a center wavelength change corresponding to the change of the FBG's grating period. The wavelength shift resulting from both UV light and other light with the wavelength out of the UV range was about 0.18 nm. In order to improve the accuracy of the measurement, the center wavelength shift caused by radiant heat of the light source was sufficiently removed by using a thermal filter. The amount of the center wavelength shift was consequently reduced to 0.06 nm, compared to the result without the thermal filter. Also, the FBGs coated by using azobenzene polymer were produced by two different methods; thermal casting and UV curing. Considering temperature dependence, UV curing is more suitable than thermal casting in UV sensor application of the azobenzene-coated FBG. In addition, we have confirmed the wavelength dependence of the optical sensor by means of four different band pass filters. Thus, we found out that the center wavelength shift per unit intensity is 0.029 [arb. unit] as a maximum value at 370 nm wavelength region and that the absorption spectrum of the azobenzene polymer was very consistent with the wavelength dependence of the azobenzene-coated FBG.

Self-Organizing Middleware Platform Based on Overlay Network for Real-Time Transmission of Mobile Patients Vital Signal Stream (이동 환자 생체신호의 실시간 전달을 위한 오버레이 네트워크 기반 자율군집형 미들웨어 플랫폼)

  • Kang, Ho-Young;Jeong, Seol-Young;Ahn, Cheol-Soo;Park, Yu-Jin;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.630-642
    • /
    • 2013
  • To transmit vital signal stream of mobile patients remotely, it requires mobility of patient and watcher, sensing function of patient's abnormal symptom and self-organizing service binding of related computing resources. In the existing relative researches, the vital signal stream is transmitted as a centralized approach which exposure the single point of failure itself and incur data traffic to central server although it is localized service. Self-organizing middleware platform based on heterogenous overlay network is a middleware platform which can transmit real-time data from sensor device(including vital signal measure devices) to Smartphone, TV, PC and external system through overlay network applied self-organizing mechanism. It can transmit and save vital signal stream from sensor device autonomically without arbitration of management server and several receiving devices can simultaneously receive and display through interaction of nodes in real-time.

Multi-point Dynamic Displacement Measurements of Structures Using Digital Image Correlation Technique (Digital Image Correlation기법을 이용한 구조물의 다중 동적변위응답 측정)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • Recently, concerns relating to the maintenance of large structures have been increased. In addition, the number of large structures that need to be evaluated for their structural safety due to natural disasters and structural deterioration has been rapidly increasing. It is common for the structural characteristics of an older large structure to differ from the characteristics in the initial design stage, and changes in dynamic characteristics may result from a reduction in stiffness due to cracks on the materials. The process of deterioration of such structures enables the detection of damaged locations, as well as a quantitative evaluation. One of the typical measuring instruments used for the monitoring of bridges and buildings is the dynamic measurement system. Conventional dynamic measurement systems require considerable cabling to facilitate a direct connection between sensor and DAQ logger. For this reason, a method of measuring structural responses from a remote distance without the mounted sensors is needed. In terms of non-contact methods that are applicable to dynamic response measurement, the methods using the doppler effect of a laser or a GPS are commonly used. However, such methods could not be generally applied to bridge structures because of their costs and inaccuracies. Alternatively, a method using a visual image can be economical as well as feasible for measuring vibration signals of inaccessible bridge structures and extracting their dynamic characteristics. Many studies have been conducted using camera visual signals instead of conventional mounted sensors. However, these studies have been focused on measuring displacement response by an image processing technique after recording a position of the target mounted on the structure, in which the number of measurement targets may be limited. Therefore, in this study, a model experiment was carried out to verify the measurement algorithm for measuring multi-point displacement responses by using a DIC (Digital Image Correlation) technique.

Improving Accuracy of Land Cover Classification in River Basins using Landsat-8 OLI Image, Vegetation Index, and Water Index (Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선)

  • PARK, Ju-Sung;LEE, Won-Hee;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.98-106
    • /
    • 2016
  • Remote sensing is an efficient technology for observing and monitoring the land surfaces inaccessible to humans. This research proposes a methodology for improving the accuracy of the land cover classification using the Landsat-8 operational land imager(OLI) image. The proposed methodology consists of the following steps. First, the normalized difference vegetation index(NDVI) and normalized difference water index(NDWI) images are generated from the given Landsat-8 OLI image. Then, a new image is generated by adding both NDVI and NDWI images to the original Landsat-8 OLI image using the layer-stacking method. Finally, the maximum likelihood classification(MLC), and support vector machine(SVM) methods are separately applied to the original Landsat-8 OLI image and new image to identify the five classes namely water, forest, cropland, bare soil, and artificial structure. The comparison of the results shows that the utilization of the layer-stacking method improves the accuracy of the land cover classification by 8% for the MLC method and by 1.6% for the SVM method. This research proposes a methodology for improving the accuracy of the land cover classification by using the layer-stacking method.

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

Design of an $SpO_2$ Transmission Agent based on ISO/IEEE 11073 Standard Protocol (ISO/IEEE 11073 표준 프로토콜 기반의 산소포화도 전송 에이전트 설계)

  • Pak, Ju-Geon;Im, Sung-Hyun;Park, Kee-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.462-465
    • /
    • 2011
  • A pulse oximeter is a device which provides non-invasive estimate of percentage oxygen saturation of haemoglobin (SpO2). Due to the limitations of resources of personal health devices (PHDs) including pulse oximeters, they generally transmit the estimated data to a remote monitoring server through a close manager (e.g. mobile device or PC). Therefore, communication protocols between PHDs and a manager is an important research topic in terms of interoperability. In this paper, we present design results of an SpO2 transmission agent based on the ISO/IEEE 11073 (X73) protocol. The protocol is an international standard for PHDs. The agent is an embedded program which generates X73 messages from the estimated pulse rates and SpO2, and transmits the messages to a close manager. The agent consists of a Session, Message and Memory Handler. The Session Handler manages a communication session with the manager, and the Message Handler generates and analyzes the exchanged messages according to the X73 protocol. The Memory Handler extracts pulse rates and SpO2s which are stored in a memory of the pulse oximeter. The SpO2 transmission agent allows pulse oximeters to communicate with managers based on x73 standard. Consequently, the interoperability between the pulse oximeters and the managers is guaranteed.

  • PDF

Effects of the Cooling and Heating System with Seasonal Thermal Storage in Alluvial Aquifer on Greenhouse Heating (충적대수층 계간축열 냉난방 시스템의 온실 난방 효과)

  • Moon, Jong Pil;Kang, Geum Choon;Kim, Hyung Gweon;Lee, Tae Seok;Oh, Sung Sik;Jin, Byung Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.127-135
    • /
    • 2017
  • In this study, a cold well and a warm one with the distance of 100 m were installed in the alluvial aquifer. Groundwater used as the heat and the cold source of heat pump was designed to flow into the warm and the cold well with a diameter of 200 mm. In order to increase the heat and cold storage in aquifer, six auxiliary wells with the diameter of 50 mm and the depth of 30 m were installed at an interval of 5 m from the main well. Also, heat pump 50 RT, the thermal tank $40m^3$, and a remote control and monitoring system were installed in three single-span greenhouses ($2,100m^2$) for growing tomato in Buyeo, Chungcheongnam-do. According to the aquifer heat storage test which had been conducted from Aug. 31 to Sep. 22, 2016, warm water of $850m^3$ was found to flow into warm well. The temperature of the injected water was $30^{\circ}C$ (intake temperature : $15^{\circ}C$), and the heat of 12.8 Gcal was stored. The greenhouse heating test in winter had been conducted from Nov. 21, 2016 to Apr. 30, 2017. On Nov. 21, 2016 when heating greenhouse started, the aquifer temperature of the warm well was $18.5^{\circ}C$. The COP for heating with water source at $18.5^{\circ}C$ was 3.8. The intake water temperature of warm well was gradually lowered to the temperature of $15^{\circ}C$ on Jan. 2, 2017 and the heat pump COP was measured to be 3.2 at that time. As a result, the heat pump COP was improved by 18 %. and retrieval heat was 8 Gcal, the retrieval rate of heat stored in aquifer was estimated at 63 %.

The Development of a beam profile monitoring system for improving the beam output characteristics (빔 출력 특성 개선을 위한 빔 프로파일 모니터링 시스템 개발)

  • An, Young-jun;Hur, Min-goo;Yang, Seung-dae;Shin, Dae-seob;Lee, Dong-hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2689-2696
    • /
    • 2015
  • Radioactive isotopes which are manufactured using a cyclotron in a radioisotope used for radiation diagnosis is affected by the production yield according to size and shape of the beam and beam uniform degree from irradiated location when the proton beam investigated the target by cyclotron. Therefore, in this paper developed the BPM(Beam Profile Monitor) device capable of measuring the beam cross-section at the cyclotron beam line. It was configured so as to be able to remote control the BPM device in LabView and used the BPM program it was to be able to easily monitor and display to analyze the graph of two-dimensional graph and a three-dimensional beam distribution numerical information of the beam obtained while scanning the tungsten wire to the X and Y axis. The time it takes to measure the beam can be confirmed 37seconds when step motor driving speed was 2000pps. Through a beam readjusted based on the measured beam distribution information by optimizing the beam distribution it can be made to maximize the RI production yield and contribute supply stabilization.

ICT based Wireless Power Transmission System Development (ICT 기반의 무선전력전송 시스템 개발)

  • Lee, Jong-Hee;Bang, Junho;Chun, Hyun-Jun;Seo, Beom-Geun;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • Recently, wireless power transmission has attracted much interest and is the subject of much research in industry and academia. As its name implies, it is a technology which involves transferring power without wires. This paper presents the design of an ICT-based wireless power transmission system. The proposed system consists of a wireless transceiver unit and high-efficiency coil unit, which can increase both the transmission efficiency and the effective power distance. In particular, the wireless transceiver unit was designed to work with the ICT technique to enable real-time remote monitoring. Also, studies were done relating to the effect of reducing the standby power. The optimal frequency of IGBT devices used in industrial wireless power systems of 20[KHz] was utilized. The values of $23.9[{\mu}H]$ and $2.64[{\mu}F]$ were selected for L and C, respectively, through many field experiments designed to optimize the system design. In addition, an output current controlling algorithm was developed for the purpose of reducing the standby power. The results presented in this paper represent a 75[%] to 85[%] higher power transmission efficiency with a 10[%] increase in the effective power transmission distance compared with the existing systems. As a result, the proposed system exhibits a lower standby power and maintenance costs. Also, the designed wireless transceiver unit facilitates fault detection by means of user acquired data with the development of the ICT applied program.