• Title/Summary/Keyword: Remote Emergency Medical System

Search Result 25, Processing Time 0.025 seconds

The development of module for measurement and wireless communication of SpO2/PPG signals (혈중산소포화도/맥파 신호 측정 및 무선 전송을 위한 모듈 개발)

  • Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.981-986
    • /
    • 2011
  • In this paper, the module for measuring SpO2 and PPG(Photo Plethysmo Graphy) signal of human body and the module for wireless communication of these bio-signals to PC were developed. The program was developed to display transmitted SpO2 and PPG signal by various type data and graph without information loss during a emergency transfer. This system can be utilized as appropriate for remote medical care and a new market is expected, to be created according to revision of medical law.

Mobile Phone based Asthma Management System (이동전화를 이용한 천식질환 원격관리시스템)

  • Park, Kyung-Soon;Park, Min-Ho;Kim, Kyoung-Oak;Park, Se-Jin;Kim, Seong-Sik;Lee, In-Kwang;Lee, Hye-Ran;Kim, Kyung-Ah;Cha, Eun-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.369-378
    • /
    • 2012
  • Asthma requires continuous long-term management with at least 5% outcome of general population as well as being the second cause of death and disability after cancer. The present study developed an efficient self management system based on the commercial mobile phone network. The spirometric test results are input to the mobile phone through the communication line connected to the portable spirometer. The doctor or the care-giver can search, identify, and review the data accumulated daily by the patient, and feedback to the patient necessary recommendations by short message and color mail services. Patient can also send an emergency call to the doctor and/or the care-giver. User interface was designed as convenient as possible for maximum efficiency of these operations. The present system provides a desired remote medical services, thus would enhance health management of chronic diseased patients.

Remote Temperature Control System using a Zigbee Communication (지그비 통신을 이용한 원격 온도제어 시스템)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • In this paper, a remote control system capable of monitoring and controlling the temperature of a refrigerator in real time using the ZigBee communication technology is developed. The developed system provides 24-hour surveillance function including temperature maintenance and it is able to determine monitored data from a remote location and to change the setting of the temperature value. In case the value is out of the setting, it is designed for administrators to verify the problem and take action, sending alarms to management server and the emergency to a preset administrator via SMS. Applying this system to refrigerators storing commercial, medical, and experimental material, the real time status such as temperature and malfunction of refrigerator can be managed up to 16 SZM(Slave Zigbee Module) by only one MZM(Master Zigbee Module).

Telemedicine Protocols for the Management of Patients with Acute Spontaneous Intracerebral Hemorrhage in Rural and Medically Underserved Areas in Gangwon State : Recommendations for Doctors with Less Expertise at Local Emergency Rooms

  • Hyo Sub Jun;Kuhyun Yang;Jongyeon Kim;Jin Pyeong Jeon;Sun Jeong Kim;Jun Hyong Ahn;Seung Jin Lee;Hyuk Jai Choi;In Bok Chang;Jeong Jin Park;Jong-Kook Rhim;Sung-Chul Jin;Sung Min Cho;Sung-Pil Joo;Seung Hun Sheen;Sang Hyung Lee
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.4
    • /
    • pp.385-396
    • /
    • 2024
  • Previously, we reported the concept of a cloud-based telemedicine platform for patients with intracerebral hemorrhage (ICH) at local emergency rooms in rural and medically underserved areas in Gangwon state by combining artificial intelligence and remote consultation with a neurosurgeon. Developing a telemedicine ICH treatment protocol exclusively for doctors with less ICH expertise working in emergency rooms should be part of establishing this system. Difficulties arise in providing appropriate early treatment for ICH in rural and underserved areas before the patient is transferred to a nearby hub hospital with stroke specialists. This has been an unmet medical need for decades. The available reporting ICH guidelines are realistically applicable in university hospitals with a well-equipped infrastructure. However, it is very difficult for doctors inexperienced with ICH treatment to appropriately select and deliver ICH treatment based on the guidelines. To address these issues, we developed an ICH telemedicine protocol. Neurosurgeons from four university hospitals in Gangwon state first wrote the guidelines, and professors with extensive ICH expertise across the country revised them. Guidelines and recommendations for ICH management were described as simply as possible to allow more doctors to use them easily. We hope that our effort in developing the telemedicine protocols will ultimately improve the quality of ICH treatment in local emergency rooms in rural and underserved areas in Gangwon state.

A Study on the Seamless Monitoring over the Wireless LAN and the Public Cellular Network for a Portable Patient Monitoring System

  • Kim Woo-Shik;Cho Hyang-Duck
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • As information technologies are developing, the improvement of the quality of life becomes worldwide issues. Especially, to improve the quality of life of a patient suffering intermittent diseases, in addition to the some portable equipments for measuring, analyzing, and notifying the status of the patients, methods of communication for seamless transmission of the measured data over to the remote site, such as an emergency center or a hospital, are required. In this paper, we address a seamless transmission of patient monitoring data such as ECG from a moving patient to a remote site, wherever the patient may be. We divide the whole environments into two wireless communication environments: an indoor one based on WLAN and an outdoor one based on CDMA cellular network in which the patient is assumed to move anywhere. We develop algorithms, implement them on a PDA-based hardware platform, and show some of the results for handover between the two environments in addition to the data transmission for each of the two environments.

A Study on Remote Medical Emergency System Development for Ambulance (구급차용 응급 원격의료 시스템에 관한 연구)

  • Kwon, Jang-Woo;Kim, Gyu-Dong;Hong, Jun-Eui;Lee, Dong-Hoon;Kim, Su-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.657-660
    • /
    • 2007
  • 구급차에서는 위급한 상황의 환자를 이송할 시에 적절한 응급조치가 필요로 하고 환자의 상태에 맞는 조치를 취하여야 한다. 그러나 모든 구급차에 의사가 상주 할 수 없음으로 CDMA 망을 이용하여 원격지의 의사가 원격의료가 가능한 시스템을 제안한다. 낮은 전송속도에서 효율적으로 중요한 의학적 정보를 전송할 수 있는 원격 응급 의료 시스템이 개발된다면 의료기관에 상주하는 의사와 데이터를 송수신하는 시간도 단축할 수 있으며, 응급상황 발생시 대처를 하지 못하거나 하는 경우를 예방할 수 있어 환자 이송 시에 상당한 효과가 있으리라 판단된다.

A Study on the Implementation of a Portable Healthcare System using Zigbee (Zigbee를 이용한 휴대형 헬스케어 시스템 구현에 관한 연구)

  • Kang, Sung-In;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1793-1798
    • /
    • 2007
  • Recently there are some trends to construct smart home system infrastructure depending upon the development of Information and Communication Technology. Also requirements of the Ubiquitous Healthcare Systems at home which can monitor the status of health continuously are increased rapidly comparing with hospitals. Healthcare service can be divided into two categories. The first one is Alarm Service that can be used for the emergency status and the other one is Remote Support Service which can monitor the patient including home environments and give those diagnosis information to medical office or to his family. Generally wired networks and fixed healthcare measuring system have some limits to transmit reliable realtime based information for both categories described above comparing with portable monitoring system. Getting over the inefficiency we will design and implement portable healthcare system under the wireless Zigbee network environments.

Mobile Remote Healthcare in Ubiquitous Computing Environments (유비쿼터스 환경에서 모바일을 이용한 원격 헬스케어)

  • Kang, Eun-Young;Im, Yong-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.55-61
    • /
    • 2008
  • In this paper, we proposed a multi-agent based healthcare system (MAHS) which is the combination of medical sensor module and wireless communication technology. This MAHS provides wide services to mobile telemedicine, patient monitoring, emergency management, doctor's diagnosis and prescription, patients and doctors, information exchange between hospital workers in a long distance. Also, MAHS is connected to Body Area Network (BAN) and a doctor and hospital workers. In addition, we designed and implemented extended JADE based MAHS that reduces hospital server's burden. Agents gather, integrate, and deliver the collected patient's information from sensor, and provide presentation in healthcare environment. Proposed MAHS has advantage that can handle urgent situation in the far away area from hospital like Islands through PDA and mobile device. In addition, by monitoring condition of patient (old man) in a real time base, it shortens time and expense and supports medical service efficiently.

  • PDF

Ring-type Heart Rate Sensor and Monitoring system for Sensor Network Application (센서 네트워크 응용을 위한 반지형 맥박센서와 모니터링 시스템)

  • Jang, In-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.619-625
    • /
    • 2007
  • As low power, low cost wireless communication technology like Bluetooth, Zigbee, RFID has been put to practical use together with the wellbeing trend, the concern about ubiquitous health care has been greatly increased and u-Health is becoming one of the most important application in the sensor network field. Especially, development of the medical services to be able to cope with a state of emergency for solitary senior citizens and the aged in silver town is very meaningful itself and their needs are also expected to continuously increase with a rapid increase in an aging population. In this paper we demonstrate the feasibility of extracting accurate heart rate variability (HRV) measurements from photoelectric plethysmography(PPG) signals gathered by a ring type pulse oximeter sensor attached to the finger. For this, we made 2 types of ring sensor, that is reflective and pervious type, and developed the remote monitoring system which is able to collect HR data from ring sensor, analyze and cope with a state of emergency.

Development of Textile Fabrics Flexible Platform based Multiple Bio-Signal Central Monitoring System for Emergency Situational Awareness in High-Risk Working Environments (고위험 작업환경에서 응급상황 인지를 위한 직물형 플렉시블 플랫폼 기반의 다중 생체신호 중앙 모니터링 시스템 개발)

  • Jeon, Ki-Man;Ko, Kwang-Cheol;Lee, Hyun-Min;Kim, Young-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.227-237
    • /
    • 2014
  • The purpose of this paper is to implement a multiple bio-signal central monitoring system based on textile fabrics flexible platform which can obtain and monitor bio signals(heart rate, body temperature, electrocardiography, electromyogram) of workers in special working environments and additional situational information (3-axis acceleration, temperature, humidity, illumination, surrounding image). This system can prevent various accidents that may occur in the remote work environment and provide fast and efficient response by detecting workers' situations in real-time. For it, the textile fabrics flexible platform was made as innerwear or outerwear so that it does not interfere with workers' performance while collecting bio-signal and situational information, and obtained information is sent to the central monitoring system through wireless communication. The central monitoring system is based on wireless medical telemetry service of WMTS (Wireless Medical Telemetry Service); can monitor from 2 to 32 people simultaneously; and was designed so that it can be expanded. Also, in this study, to verify performance of the WMTS communication model, packet transmission rates were compared according to the distance.