• Title/Summary/Keyword: Remote Data Analysis

Search Result 1,553, Processing Time 0.034 seconds

Remote sensing and GIS technologies for route selection of 'West-East Nature Gas pipeline'

  • Zhu Xiaoge;Zhang Yaoyan;Zhang Yiming;Van Hu;Shihong Wang
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.28-30
    • /
    • 2004
  • The West-East Nature Gas Pipeline is a great project in China. Advanced remote sensing technology combined with GIS and GPS is used to select the favorable plan from various possible routes through interpreting the information of topographic landform, regional geology, disaster geology, traffic conditions and nature environment from remote sensing images. There are a lot of changes in geographical and environmental factors along such pipelines due to the rapid development in China. Image maps produced from new satellite data can identify these changes and be used successfully not only on route-selection studies but also on in situ investigation, together with GPS. Results from detail analysis provide necessary information and parameters for plan, design and construction of the pipeline and they are also the basic data for the pipeline database. The set of techniques has been applied on planning and designing several pipelines successfully.

  • PDF

On Mathematical Representation and Integration Theory for GIS Application of Remote Sensing and Geological Data

  • Moon, Woo-Il M.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.37-48
    • /
    • 1994
  • In spatial information processing, particularly in non-renewable resource exploration, the spatial data sets, including remote sensing, geophysical and geochemical data, have to be geocoded onto a reference map and integrated for the final analysis and interpretation. Application of a computer based GIS(Geographical Information System of Geological Information System) at some point of the spatial data integration/fusion processing is now a logical and essential step. It should, however, be pointed out that the basic concepts of the GIS based spatial data fusion were developed with insufficient mathematical understanding of spatial characteristics or quantitative modeling framwork of the data. Furthermore many remote sensing and geological data sets, available for many exploration projects, are spatially incomplete in coverage and interduce spatially uneven information distribution. In addition, spectral information of many spatial data sets is often imprecise due to digital rescaling. Direct applications of GIS systems to spatial data fusion can therefore result in seriously erroneous final results. To resolve this problem, some of the important mathematical information representation techniques are briefly reviewed and discussed in this paper with condideration of spatial and spectral characteristics of the common remote sensing and exploration data. They include the basic probabilistic approach, the evidential belief function approach (Dempster-Shafer method) and the fuzzy logic approach. Even though the basic concepts of these three approaches are different, proper application of the techniques and careful interpretation of the final results are expected to yield acceptable conclusions in cach case. Actual tests with real data (Moon, 1990a; An etal., 1991, 1992, 1993) have shown that implementation and application of the methods discussed in this paper consistently provide more accurate final results than most direct applications of GIS techniques.

A STUDY ON PUPIL DETECTION AND TRACKING METHODS BASED ON IMAGE DATA ANALYSIS

  • CHOI, HANA;GIM, MINJUNG;YOON, SANGWON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.327-336
    • /
    • 2021
  • In this paper, we will introduce the image processing methods for the remote pupillary light reflex measurement using the video taken by a general smartphone camera without a special device such as an infrared camera. We propose an algorithm for estimate the size of the pupil that changes with light using image data analysis without a learning process. In addition, we will introduce the results of visualizing the change in the pupil size by removing noise from the recorded data of the pupil size measured for each frame of the video. We expect that this study will contribute to the construction of an objective indicator for remote pupillary light reflex measurement in the situation where non-face-to-face communication has become common due to COVID-19 and the demand for remote diagnosis is increasing.

Regional Geological Mapping by Principal Component Analysis of the Landsat TM Data in a Heavily Vegetated Area (식생이 무성한 지역에서의 Principal Component Analysis 에 의한 Landsat TM 자료의 광역지질도 작성)

  • 朴鍾南;徐延熙
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.49-60
    • /
    • 1988
  • Principal Component Analysis (PCA) was applied for regional geological mapping to a multivariate data set of the Landsat TM data in the heavily vegetated and topographically rugged Chungju area. The multivariate data set selection was made by statistical analysis based on the magnitude of regression of squares in multiple regression, and it includes R1/2/R3/4, R2/3, R5/7/R4/3, R1/2, R3/4. R4/3. AND R4/5. As a result of application of PCA, some of later principal components (in this study PC 3 and PC 5) are geologically more significant than earlier major components, PC 1 and PC 2 herein. The earlier two major components which comprise 96% of the total information of the data set, mainly represent reflectance of vegetation and topographic effects, while though the rest represent 3% of the total information which statistically indicates the information unstable, geological significance of PC3 and PC5 in the study implies that application of the technique in more favorable areas should lead to much better results.

A study on analysis to time series data by using vegetation surface roughness index

  • Konda, Asako;Kajiwara, Koji;Honda, Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.706-708
    • /
    • 2003
  • Index for difference of vegetation surface roughness (BSI: Bi-directional reflectance factor structure Index) was proposed in our laboratory (Konda et al., 2000). It is thought that BSI is useful vegetation index for vegetation monitoring. If it can be applied for global covered satellite data, detailed monitoring of global vegetation can be expected. However, in order to apply BSI to global satellite data, there are some problems to be solved. In this study, in order to make global data set of BSI, it arranged about processing of the global satellite data for making BSI data sets.

  • PDF

Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model (인공위성 자료와 궤적분석 모델을 이용한 화산재 모니터링)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • Satellite remote sensing data have been valuable tool for volcanic ash monitoring. In this study, we present the results of application of satellite remote sensing data for monitoring of volcanic ash for three major volcanic eruption cases (2008 Chait$\acute{e}$n, 2010 Eyjafjallaj$\ddot{o}$kull, and 2011 Shinmoedake volcanoes). Volcanic ash detection products based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) observation data using infrared brightness temperature difference technique were compared to the forward air mass trajectory analysis by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. There was good correlation between MODIS volcanic ash image and trajectory lines after the volcanic eruptions, which support the feasibility of using the integration of satellite observed and model derived data for volcanic ash forecasting.

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Geostatistical Fusion of Spectral and Spatial Information in Remote Sensing Data Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.399-401
    • /
    • 2003
  • This paper presents a geostatistical contextual classifier for the classification of remote sensing data. To obtain accurate spatial/contextual information, a simple indicator kriging algorithm with local means that allows one to estimate the probability of occurrence of certain classes on the basis of surrounding pixel information is applied. To illustrate the proposed scheme, supervised classification of multi-sensor remote sensing data is carried out. Analysis of the results indicates that the proposed method improved the classification accuracy, compared to the method based on the spectral information only.

  • PDF

APPLICATION OF LOGISTIC REGRESSION MODEL AND ITS VALIDATION FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AND REMOTE SENSING DATA AT PENANG, MALAYSIA

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.310-313
    • /
    • 2004
  • The aim of this study is to evaluate the hazard of landslides at Penang, Malaysia, using a Geographic Information System (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from TM satellite images; and the vegetation index value from SPOT satellite images. Landslide hazardous area were analysed and mapped using the landslide-occurrence factors by logistic regression model. The results of the analysis were verified using the landslide location data and compared with probabilistic model. The validation results showed that the logistic regression model is better prediction accuracy than probabilistic model.

  • PDF

Telemedicine Cooperation Experience of Nurses Working in Remote Areas (의료취약지 근무 간호인력의 원격협진 수행 경험)

  • Chin, Young Ran;Kim, Hyun
    • Journal of Korean Academy of Rural Health Nursing
    • /
    • v.17 no.2
    • /
    • pp.43-49
    • /
    • 2022
  • Purpose: This study was conducted to explore the telemedicine cooperation experience of nurses working in remote areas. Methods: A focus group interviews were used to collect data. All interviews were recorded and transcribed. Content analysis was used to analyze the data. Results: The three main categories and seven sub-categories of telemedicine cooperation experience that emerged are 1) requirement of education on remote support service, 2) consideration of the recipients of medical support services and the characteristics of the area, and 3) difficulties in conducting telemedicine cooperation. Conclusion: As a result of the study, legal protection should be given priority, and it is necessary to select an area where remote cooperation is essential, to discover subjects, and to reduce the burden of work and division of manpower and duties.