• Title/Summary/Keyword: Remazol black 5

Search Result 5, Processing Time 0.02 seconds

Characterization of Remazol Black B-Biodegradation by Stenotrophomonas maltophilia EJ-211 (Stenotrophomonas maltophilia EJ-211에 의한 Remazol Black B의 분해 특성 분석)

  • 이은열;이은정;임광희;임동준
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.288-293
    • /
    • 2002
  • A reactive dye-degrading bacterium was isolated from textile waste water and it was identified as Stenotrophomonas maltophilia based on its biochemical characteristics. The effects of additional carbon and nitrogen sources were investigated for the development of an optimal medium for biodegradation of Remazol Black B by 5. maltophilia. The optimal pH and temperature were determined to be 6.5 and 3$0^{\circ}C$, respectively. Remazol Black B with the initial concentration of 50 ppm could be degraded up to 86% within 28 h.

Characterization of Aerobic Decolorization of Remazol Black B by White Rot Fungi (Remazol Black B의 호기성 탈색을 위한 백색부후균의 분해 특성 분석)

  • 이재화;이은열
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.511-515
    • /
    • 2003
  • White rot fungi, Phanerochaete sp. EJ-31L, was evaluated for its ability to decolorize Remazol Black B, an azo dye that is a widespread pollutant in the wastewater of textile industry. It was observed that extent of decolorization by Phanerochaete sp. EJ-31L was dependent on the concentrations of co-carbon and nitrogen source. Effects of agitation and aeration were studied, and agitated culture at aeration condition resulted in greater extent of decolorization than static culture. Remazol Black B was readily decolorized up to 95% within 64 hr by Phanerochaete sp. EJ-31L.

Decomposition of Reactive Dyes by Catalytic Wet Air Oxidation Process(2) (촉매 습식산화에 의한 반응성 염료 분해(2))

  • Choi, Jang-Seung;Woo, Sung-Hoon;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2077-2083
    • /
    • 2000
  • For the application of wet air oxidation(WAO) process reactive dyes, remazol blacks has been selected as the subject for this study. The rate of decomposition relating to the reaction temperature and catalyst has been summarized during the catalytic wet air oxidation reaction. When 1.5 gram per liter of platinum is added titanium-dioxide and the partial pressure is adjusted to 6 atmosphere at the reaction temperature exceeding $200^{\circ}C$, more than 95% of the remazol blacks dyes were decomposed. When the reaction temperature was raised to $200^{\circ}C$, $220^{\circ}C$ and $250^{\circ}C$, respectively, for 240 minutes after adding the catalyst, the remaining rate of ultraviolet absorbance had dropped significantly to 18%, 12%, and 4%. At the reaction temperature of $250^{\circ}C$, color removal efficiency was approximately 95% or more after 120 minutes from the beginning of the reaction.

  • PDF

A new nano-ZnO/perlite as an efficient catalyst for catalytic ozonation of azo dye

  • Shokrollahzadeh, Soheila;Abassi, Masoud;Ranjbar, Maryam
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.513-520
    • /
    • 2019
  • In this investigation, nano ZnO was sonochemically synthesized by a novel method using a methionine precursor. A narrow size distribution (41-50 nm) of nano ZnO was achieved that was immobilized on perlite and applied as a catalyst in catalytic ozonation. The catalyst was characterized by fourier transform infrared spectroscopy, BET surface area, and field emission scanning electron microscope. The ozonation of recalcitrant Remazol black 5 (RB5) di-azo dye solution by means of the synthesized catalyst was investigated in a bubble column slurry reactor. The influence of pH values (7, 9, 11), catalyst dosage (8, 12, 15, $20g\;L^{-1}$) and reaction time (10, 20, 30, 60 min) was investigated. Although the dye color was completely removed by single ozonation at a higher reaction time, the applied nanocatalyst improved the dye declorination kinetics. Also, the degradation of the hazardous aromatic fraction of the dye was enhanced five-times by catalytic ozonation at a low reaction time (10 min) and a neutral pH. The second-order kinetics was best fitted in terms of both RB5 color and its aromatic fraction removal. The total organic carbon analysis indicated a significant improvement in the mineralization of RB5 by catalytic ozonation using the nano-ZnO/perlite catalyst.

Decolorization of synthetic dyes by Rhodopseudomonas palustris P4

  • Oh, You-Kwan;Kim, Yeon-Hee;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.403-408
    • /
    • 2003
  • A newly isolated Rhodopseudomonas palustris P4 could decolorize various synthetic dyes containing different chromogenic groups such as azo linkage (Crocein Orange G, New Coccine, Chromotrope FB, Congo Red, Remazol Black B), anthraquinone Reactive blue 2, or indigo Indigo Carmine. Among them, the degradation rate of Black B was studied in detial. Degradation of Black B followed the Arrhenius equation in 25 - $40^{\circ}C$ with an activation energy of 7.79 kcal/mol. Optimum pH was 8. Glucose in the range of 5 - 50g/l did not affect the Black B decolorization. When Black B increased from 25 mg/l to 2000 mg/l, decolorization activity increased almost linearly but the extent of decolorization was constant at about 86% irrespective of dye concentration. Analyses by HPLC revealed that the Black B molecules were partially degraded and some chromogenic intermediates were produced. These results indicate that Rps. palustris P4 has an outstanding capability to degrade various dyes.

  • PDF