• Title/Summary/Keyword: Remaining Layer

Search Result 214, Processing Time 0.027 seconds

Analysis and Conservation of Sheet Music Featuring the National Anthem of Korea with Lyrics in Korean, Chinese, and English - Focusing on Light Blue Pigment Analysis and Conservation Treatment - (한중영문중국판 한국애국가 악보의 분석 및 보존 - 밝은 청색안료 분석과 보존처리를 중심으로 -)

  • BAE Subin;PARK Serin;LEE Hanhyoung;JEONG Heewon
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.104-114
    • /
    • 2024
  • Sheet Music of the National Anthem of Korea with Lyrics in Korean, Chinese, and English is a four-sided sheet of paper folded in half. It was first introduced to Korea on November 12, 1945, by Kim Ku, the president of the Provisional Government. The sheet music was published in three languages and is a valuable document for researching the evolution of the anthem and its history. Although it was published in large quantities at the time, it is currently known as the only in Korea and has been designated and managed as a national registered heritage. The sheet music was not significantly damaged, but discoloration and physical damage suggested raised the need for conservation treatment. A pre-treatment examination of the conservation condition revealed that the artifact was received on archival film and had been folded in half for many years, leaving it vulnerable to tears at the top and bottom of the folds and partial wear and tear at the edges. In addition, the pigments used on both sides of the sheet had discolored and transferred to the opposite side. Portable X-ray fluorescence (XRF) analysis was conducted to investigate the pigments used in the sheet music cover, specifically focusing on red, black, and light blue pigments. Titanium (Ti) was detected in the light blue pigment, characterized by a powdery coloring layer. The remaining colors in the printed form were difficult to sample and could not be analyzed further. The light blue sample underwent additional analysis using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and Raman spectroscopy. Cross-validation of the results with the artifact's historical context suggested that the bright blue color observed in the 1945 sheet music is likely due to the use of anatase white pigment, rather than rutile. Furthermore, the bright blue pigment is believed to be a blend of phthalocyanine blue, a synthetic pigment introduced in 1936. Fiber analysis revealed longitudinal striations in the hemp fibers and twists in the cotton fibers, suggesting that the paper was made from a mixture of cotton and hemp fibers. Based on the findings of the condition survey, the conservation treatment for the artifact focused on minimizing moisture to avoid stressing the paper and reinforcing the physically vulnerable areas. The reinforcement paper was dyed to match the base of the artifacts, pre-coated repair paper was used for conservation, and appropriate folders and boxes were made for storage after treatment. This study is expected to serve as an important foundational resource on the materials used in modern and contemporary records.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

A Study on Labor Saving in Paddy Rice Cultivation (논벼재배에 있어서의 노동력 절감에 관한 연구)

  • Young-Chul Chang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.11
    • /
    • pp.81-97
    • /
    • 1972
  • Experiments and investigations were done basically and practically for the purpose of labor saving in paddy rice cultivation especially on Homizil i.e. hoeing and herbicide, 1969. 8 concrete tanks were established on the open base of Keon Kuk University for comparison of percolation, dissolved oxygen and yield test of rice in the paddy plot of tank. The dimension of the bottom of each tank is square meter. Each of the 4 of the 8 tanks is 21cm in height and each of the remaining 4 tanks is 36cm. Each tank has a system that comprises 2 sets of tubes, each of which has 20 holes of 5mm in diameter scattered every side and is covered with nylon cloth taking water in the tank. One set consists of 4 P.V.C tubes. The first set is situated 8cm below the top of the tank and the second set is located at bottom layer inside the tank. The 4 tubes of each set are combined together and led to the glass tube which protects from inside to outside. And this inside-outside glass tube is connected to the small rubber tube. Also a glass tube is set 4cm below the top of the tank. Paddy loam was filled on sand in each of the tanks in the soil depth of either 15cm or 30cm. The depth of sand was 5cm in the soil depth of 15cm and 10cm in the soil depth of 30cm. (Fig. 1, 2 and 3). The paddy rice was grown in the tank. The percolation of water, the dissolved oxygen and the yield of rice were observed in the tank. And the dissolved oxygen was detected by Winkler method. A sandy paddy field of heavy percolation was selected at the field of the National Agricultural Material Inspection Center in Seoul. It was divided into 9 plots. These plots were given 3 treatments: (A) not hoeing, (B) hoeing one time and (C) hoeing two times. These treatments were replicated 3 times along the latin square design. The paddy rice was grown and sprayed with Stam F-34 in the all plots for the purpose of killing weeds before hoeing. The two types of paddy of field i.e. one for normal percolation and the other for ill drainage were selected at Iri Crop Experiment Station, Jeonla-Bukdo. Each field was divided into 24 plots for 8 treatments. They are: (A) not hoeing; (B) hoeing one time; (C) hoeing two times; (D) not hoeing but treating with herbicide, Pamcon; (E) hoeing one time and weeding two times also treating with herbicide, Pamcon; (F) hoeing two times and weeding one time a], o treating with herbicide, Pamcon; (G) hoeing two times and weeding two times also treating with herbicide, Pamcon, ; (H) usual manner. The labor hours and expenses needed for weeding in the paddy by hoeing were investigated in a farmer at Suwon and the price of herbicide and the yield of rice were taken out at Iri, Jeonla-Bukdo. The results obtained from the above experiments and investigations are as follows: 1. The relationship between percolation and dissolved oxygen shows that a very small amount of oxygen is detected in the soil water under 2cm below surface of earth in the paddy even when percolation is over 4.0cm per 24 hours (Tab. 1). 2. The relationship between percolation and yield of rice shows that the yield of rice increases in the percolation of 0cm and 1.5cm per 24 hours and decreases in the percolation of 2.5cm and 3.4cm in the plot of the 15cm ploughing depth and increases in the percolation of 1.4cm and 3.0cm and decreases in the percolation of 0cm and 4.0cm in the plot of 30cm ploughing depth (Tab. 1 and Fig. 5). 3. The yield of paddy weeded with Stam F-34 in the sandy field of heavy percolation in Seoul was 3.02 tons in the plot of not hoeing, 2.99 tons in hoeing one time and 3.05 tons in hoeing two times per hectare (Tab. 5). 4.1). 4. 1) The yield of rice per 10 ares in the field of normal percolation at Iri was 338kg in not hoeing, 379kg in hoeing one time, 383kg in hoeing two times, 413kg in spraying herbicide, Pamcon, and not hoeing, 433kg in spraying herbicide, Pamcon, and hoeing one time and weeding two times, 399kg in spraying herbicide, Pamcon, and hoeing two times and weeding one time, 420kg in spraying herbicide, Pamcon, and hoeing two times and weeding two times and 418kg in usual manner (Tab. 6-1). 2) The yield of rice per 10 ares in the field of ill drainage at Iri was 323kg in not hoeing, 363kg in hoeing one time, 342kg in hoeing two times, 388kg in spraying herbicide, Pamcon, and not hoeing, 425kg in spraying herbicide, Pamcon, and hoeing one time and weeding two times, 427kg in spraying herbicide, Pamcon, and hoeing two times and weeding one time, 449kg in spraying herbicide, Pamcon, and hoeing two times and weeding two times and 412kg in usual manner (Tab. 6-2). 5. 1) The labor hours for weeding by hoeing was 37.1 hours but 53.5 hours if hours for meal, smoking and so on are included, and the expenses including labor cost needed for weeding by hoeing in the paddy rice was 2, 346 Won per 10 ares at Suwon (Tab. 7). 2) The labor hours for weeding by spraying herbicide with hand sprayer in the paddy rice was about 5 hours per 10 ares at Suwon and the expenses for weeding by spraying herbicide in the paddy rice was 750 Won but 1130 Won if the loss by decrement of rice in the paddy field of ill drainage per 10 ares is calculated in estimation at Iri (Tab. 8). From these observations and investigations it is known that using of some kinds of herbicides Saves labor and expenses of weeding, almost without giving damages to the rice itself, in the field of normal or heavy percolation comparing usual manner of hoeing.

  • PDF