• Title/Summary/Keyword: Remaining Capacity Estimation

Search Result 16, Processing Time 0.023 seconds

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.

An Empirical Study on Machine Learning based Smart Device Lithium-Ion Cells Capacity Estimation (머신러닝 기반 스마트 단말기 Lithium-Ion Cell의 잔량 추정 방법의 실증적 연구)

  • Jang, SungJin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.797-802
    • /
    • 2020
  • Over the past few years, smart devices, including smartphones, have been continuously required by users based on portability. The performance is improving. Ubiquitous computing environment and sensor network are also improved. Due to various network connection technologies, mobile terminals are widely used. Smart terminals need technology to make energy monitoring more detailed for more stable operation during use. The smart terminal which is light in small size generates the power shortage problem due to the various multimedia task among the terminal operation. Various estimation hardwares have been developed to prevent such situation in advance and to operate stable terminals. However, the method and performance of estimating the remaining amount are not relatively good. In this paper, we propose a method for estimating the remaining amount of smart terminals. The Capacity Estimation of lithium ion cells for stable operation was estimated based on machine learning. Learning the characteristics of lithium ion cells in use, not the existing hardware estimation method, through a map learning algorithm using machine learning technique The optimized results are estimated and applied.

A Study on the Development of Risk Assessment for Sunken Vessels Using Remaining-Fuel Estimations Model (선박 연료유 잔존량 추정모델을 이용한 침몰선박 위해도 평가)

  • Chang, Woo-Jin;Lee, Seung-Hyun;Yeom, Hong-Jun;Lee, In-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.90-97
    • /
    • 2016
  • Sunken vessels accidents have harmful impacts on the marine environment because of oils and chemicals in the vessels. The government has managed them and developed risk assessment which can evaluate potential risk quantitatively since 1999. But the grades of present risk assessment has changed greatly depending on quantity of remaining fuel oils, and the list of remaining fuel oils omitted in status report of sunken vessels. Therefore, the aim of the study is to estimate and develop model for quantity of remaining fuel oils and verify the remaining fuel estimation comparison with active vessels. To accomplish the purpose of the study, apply this verified estimation model to current risk assessment and recommend guideline for an accurate sunken vessels risk assessment.

Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters (등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템)

  • Lee, Seung-June;Ko, Younghwi;Kandala, Pradyumna Telikicherla;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

Estimation of Maximum Volume in Landfill Site Using Airborne LiDAR Measurement (항공LiDAR 자료를 이용한 생활폐기물매립장의 가용한도 추정)

  • Byun, Sang-Chul;Choi, Myung-Kyu;Kim, Jin-Kwang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.547-554
    • /
    • 2010
  • This study intends to analyze how long the landfill site will be available by estimating maximum volume of landfill. Preestimated volume was calculated using digital maps and scheme drawings. The latest reclamation volume was measured using the state-of-the-art airborne LiDAR technology. Based on these data. landfill volume of now, carries in volume of past a few years and subsidence rate were calculated. As a result of study, the remaining capacity of this landfill site was estimated that it would be available till 2045.

Lightweight Model for Energy Storage System Remaining Useful Lifetime Estimation (ESS 잔존수명 추정 모델 경량화 연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.436-442
    • /
    • 2020
  • ESS(energy storage system) has recently become an important power source in various areas due to increased renewable energy resources. The more ESS is used, the less the effective capacity of the ESS. Therefore, it is important to manage the remaining useful lifetime(RUL). RUL can be checked regularly by inspectors, but it is common to be monitored and estimated by an automated monitoring system. The accurate state estimation is important to ESS operator for economical and efficient operation. RUL estimation model usually requires complex mathematical calculations consisting of cycle aging and calendar aging that are caused by the operation frequency and over time, respectively. A lightweight RUL estimation model is required to be embedded in low-performance processors that are installed on ESS. In this paper, a lightweight ESS RUL estimation model is proposed to operate on low-performance micro-processors. The simulation results show less than 1% errors compared to the original RUL model case. In addition, a performance analysis is conducted based on ATmega 328. The results show 76.8 to 78.3 % of computational time reduction.

Estimation of Lifetime Data Storage Capacity for Human Senses (인간 감각 정보를 위한 평생 기억용량 평가)

  • You, Young-Gap;Song, Young-Jun;Kim, Dong-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • This paper presents a capacity estimation of a storage system accumulating all data sensed during the lifetime of an individual human being. The calculation assumes modern data compression and data collection schemes based on wearable or implanted devices under ubiquitous environment. More than 76% of the storage area is found to be used for video data storage of common TV image quality. The remaining storage area is for data from other sensing organs including audio, taste, olfactory and tactual systems in addition to indexing information. Total storage area of around 600 tera bytes is needed to cover 100 years of human life including his fetal period.

Assessment of load carrying capacity and fatigue life expectancy of a monumental Masonry Arch Bridge by field load testing: a case study of veresk

  • Ataei, Shervan;Tajalli, Mosab;Miri, Amin
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.703-718
    • /
    • 2016
  • Masonry arch bridges present a large segment of Iranian railway bridge stock. The ever increasing trend in traffic requires constant health monitoring of such structures to determine their load carrying capacity and life expectancy. In this respect, the performance of one of the oldest masonry arch bridges of Iranian railway network is assessed through field tests. Having a total of 11 sensors mounted on the bridge, dynamic tests are carried out on the bridge to study the response of bridge to test train, which is consist of two 6-axle locomotives and two 4-axle freight wagons. Finite element model of the bridge is developed and calibrated by comparing experimental and analytical mid-span deflection, and verified by comparing experimental and analytical natural frequencies. Analytical model is then used to assess the possibility of increasing the allowable axle load of the bridge to 25 tons. Fatigue life expectancy of the bridge is also assessed in permissible limit state. Results of F.E. model suggest an adequacy factor of 3.57 for an axle load of 25 tons. Remaining fatigue life of Veresk is also calculated and shown that a 0.2% decrease will be experienced, if the axle load is increased from 20 tons to 25 tons.

On-line Stabilizing Control Scheme for Power System (On-line 안정화 제어기법)

  • Oh, Tae-Kyoo;Kim, Hak-Man;Suh, Eui-Suk;Kim, Il-Dong;Kim, Yong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.903-906
    • /
    • 1997
  • When large capacity generation stations that consist of several large units tend to pull out of step from main power system, stabilizing control scheme as emergency control for preventing loss of synchronism of the whole stations with the remaining system is devided into two steps that the first step is to perform on-line prediction for out-of-step and the next step is on-line calculation of the amount of generation shedding for the rest of generators to be in step when out of step is expected. This paper presents on-line prediction scheme for out-of-step based on P-$\delta$ curve estimation using real-time measurement and on-line calculation of generation shedding. The proposed stabilizing scheme was applied to case study of real power system and the results obtained by the method compare well with the results by simulation.

  • PDF

Harmonic Current Compensation Method Using Inverter-Interfaced Distributed Generators (인버터 연계형 분산전원을 이용한 배전계통 고조파 전류 보상원리)

  • Chung, Il-Yop;Kang, Hyun-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.279-284
    • /
    • 2011
  • Harmonic distortions in current waveform may cause significant problems in electric power system facility and operation. This paper presents an adaptive parameter estimation method to detect harmonic current components caused by nonlinear loads. In addition, a coordination strategy for multiple inverter-interfaced distributed generators to compensate the harmonic currents is discussed. The coordination strategy is realized by distributing the harmonic compensation participation index to individual distributed generators. The harmonic compensation participation index can be determined by the amount of remaining power generation capacity of each distributed generator. Simulation results based on switching-level inverter models show that the proposed harmonic detection method has good performance and the coordination strategy can improve harmonic problems efficiently.