• Title/Summary/Keyword: Relief valve

Search Result 142, Processing Time 0.043 seconds

The Review of Design and Installation of the Thermal Relief Valve with It's Surrounding Facility in a Chemical Plant Piping System (배관계에서 열팽창을 고려한 열팽창매출변 및 주변설비의 설계와 설치에 관한 고찰)

  • 차순철;김영배
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.3
    • /
    • pp.104-114
    • /
    • 1997
  • Throughout the practical process engineering design and commissioning 8E startup experiences focused on chemical process safety, the review of design and installation of the thermal relief valve with its surrounding facility in a chemical plant piping system is made to help the better understanding of the piping system of characteristics of thermal relief valve which Is consisting of theoretical approach, correlation in terms of temperature and pressure increase caused by external heat supply in a piping system, consideration of thermal relief valve design, pressure relieving system of serial thermal relief valves and exception of their installation. It is earnestly recommended that following topic should be implemented during thermal relief valve design, installation and normal operation as well.

  • PDF

A Study on Engineering Design IT Installation of Thermal Relief Valve in a Chemical Plant (화학플랜트에서의 릴리프밸브 설계에 관한 고찰)

  • Char, Soon-Chul;Hwang, Soon-Yong;Jang, Seo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.4
    • /
    • pp.39-51
    • /
    • 2006
  • Based on the practical process engineering design and commissioning and startup operation experiences focused on chemical process safety, the comprehensive review of engineering design and installation of the thermal relief valve with its surrounding facility in a chemical plant piping system is provided to enhance the better understanding of the piping system of characteristics of thermal relief valve which is comprised of the theoretical approach, correlation in terms of temperature and pressure increase caused by external heat supply in a piping system, consideration of thermal relief valve engineering design, pressure relieving system of serial thermal relief valves and exception of their installation. It is earnestly suggested that following topic should be implemented during thermal relief valve engineering design, installation and normal operation as well.

Study on a Magnet-Coupleed Hydraulic Direct Relief Valve (자석을 이용한 유압직동형 릴리이프 밸브에 관한 연구)

  • ;;Lee, Chung-Oh
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.2
    • /
    • pp.65-72
    • /
    • 1977
  • Major problems in the design and use of refief valve are (a) chattering because of instability, (b) excessive pressure differential which makes the valves crack far below maximum pressure diminishing useful flow in the system. In this study, A magnet-coupled relief valve is investigated theoretically and experimentally in order to improve the performance of a conventional direct type reliefvalve. A theory is developed to predict the performance, response, and stability of the magnet-coupled valve taking into account the delivery line response. In the experiment, a typical magnet-coupled relief valve is designed on the basis of the analytical results; the discharge rates are measured varying the supply pressure, and both the pressure-time curves and valve displacament-time curves are recorded providing the supply pressures greater than the setting pressure. The measured override characteristic curves are then compared with those of conventional pilot type and direct type releif valves. It is showm that the excessive pressure differential of a magnet-coupled relief valve becomes less than that of a conventional direct type valve. It is also shown that the most important chatacteristic of a magnet-coupled relief valve is to eliminate valve chattering due to instability regardless of the magnitude of setting pressures and discharge rates, which suggests wide applications of the idea of the use of a magnet in the design of hydraulic valves.

CFD Analysis and Explosion Test of a Crankcase Relief Valve Flame Arrester for LNG-fuelled Ships (LNG 연료 추진 선박용 크랭크실 릴리프 밸브 화염방지기의 유동해석 및 폭발시험)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Kim, Dong Keon;Ahn, Byoung Hoon;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • Growing concerns about air pollution have led to increased demand for liquefied natural gas (LNG)-fuelled ships that have crankcases equipped with explosion relief valves to relieve excessive crankcase pressures and stop the flames emitted from the crankcase. The results of a computational fluid dynamics (CFD)-based feasibility analysis of the crankcase relief valve flame arrester design conducted using ANSYS CFX V14 showed that the inlet and outlet relief valve temperatures differed by $350-700^{\circ}C$. An explosion test was performed based on European standard EN14797 to evaluate the flame transmission and mechanical integrity of the valve. No flame transmission from the pressure vessel to the exterior was detected, and the mechanical integrity of the valve was confirmed. Thus, the relief valve components were found to be safe from the viewpoint of fracture.

The Development of Safety Relief Valve for Nuclear Service. (원자력 등급용 안전방출밸브 개발)

  • Kim, Chil-Sung;Kim, Kang-Tae;Kim, Ji-Heon;Jang, Ki-Jong;Hong, Kee-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.629-636
    • /
    • 2003
  • The purpose of this study is localization of safety relief valves for Nuclear Service through technical development with overall design, fabrication, inspection, capacity certification test and functional qualification test of safety relief valves in accordance with ASME Section III and KEPIC Code. Safety relief valve is the important equipment used to protect the pressure vessel, the steam generator and the other pressure facility from overpressure by discharging the operating medium when the pressure of system is reaching the design pressure of the system. But we're depending on technology of the other country up to the present time. Because we don‘ have our own technologies, we have been spent the great time and money on installing and repairing safety relief valve at nuclear power plant. Therefore we have to achieve the development of safety relief valves for Nuclear Service with our own technologies.

  • PDF

Development of Relief Valves for the Domestic Gas-fired Hot Water Boilers (가정용 가스보일러 과압방지밸브의 개발 연구)

  • Kim Young Gyu;Kwon Jeong Rock;Kim Ji Yoon;Suh Joon Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.63-68
    • /
    • 2000
  • We have developed a new relief valve which is a safety device for the domestic gas-fired hot water boilers. The relief valve has been designed to expand the inner diameter of the inlet, the outlet and the seat of the valve considering the relief capacity, and also to separate the spring from the room heating water. Therefore, we could minimize the adhesion and/or obstruction of the inlet and the corrosion phenomena of the spring which used to be the problem of the conventional relief valves. Test results of the developed relief valve showed that the performance of the opening pressure, reseating pressure, tightness, endurance were excellent, and the operating boiler with developed relief valve was evaluated as very good. The standardization and application of the relief valve can provide the advantage of component exchange and easy maintenance and repair.

  • PDF

Design review of fuel vent-relief valve (연료 벤트/릴리프 밸브의 설계 분석)

  • Jang, JeSun;Kil, GyoungSub;Han, SangYeop;Park, Jong-Ho
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A vent-relief valve performs as a safety-valve assembly for liquid propellant feeding system of space launch vehicle, which relives pressurant propellant tanks during the filling and the flight. At vent mode, valve is opened and closed by driving pneumatic pressure, and at relief mode, valve is automatically operated to set relief pressure. In this study, we have analyzed a basic layout of vent-relief valve which is designed using foreign LVs(Saturn) to satisfy requirements of Korean Space Launch Vehicle. The simulation model of vent-relief valve is designed by using the AMESim code to verify design parameters and evaluate pneumatic behaviors of valve. In this study, we performed dynamic characteristic simulations on design parameters. And we could predict opening/closing time and pressures, operating performances on design parameters. Using this results, we could suggest detail design and boundary conditions of design.

Design of Landing Gear Shock Absorber Using Pressure-relief Valve (Pressure-relief valve 를 적용한 착륙장치 완충장치 설계)

  • Kim, Tae-Uk;Shin, Jeong-Woo;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.508-511
    • /
    • 2008
  • The most landing gear use oleo-pneumatic shock strut to absorb the impact energy during touchdown. The shock strut is composed of the oil damper and the gas spring, especially the oil damper provides resistance force which is proportional to the square of landing speed. In case of high landing speed, the abnormal peak load can be occurred and transferred to the airframe structure. To prevent this, the pressure-relief valve is used to limit the damping force under the specific level. In this paper, it is presented the design process to find optimal damping and analysis results using pressure-relief valve.

  • PDF

Experiment and Simulation of Diffusion of Gas Released from the Relief Valve of a Gas Cylinder for a Portable Gas Range (압력 방출밸브를 장착한 이동식 부탄연소기용 부탄캔의 분출가스 확산 실험 및 해석)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.16-21
    • /
    • 2009
  • In the last five years, 91 accidents from portable gas ranges and non-refillable metallic gas cartridges have occurred. The gas cylinder installed with a relief valve was developed to prevent an explosive accident from the gas cartridge. In this study it was carried out to evaluate the safety of a gas cylinder mounted with a relief valve which can prevent an explosion. Under the real using condition and the extreme condition the gas cylinder is heated with an electric heater. Simultaneously, the operating pressure is checked and the suitability of releasing flux is evaluated. And the possibility of fire or explosion was tested when the gas was released from the relief valve at the real using condition. Using a numerical simulation method, the diffusion of butane gas released from a relief valve was visualized.