• Title/Summary/Keyword: Reliable transfer

Search Result 441, Processing Time 0.027 seconds

Ship Response Estimation Method in Multi-Directional Waves Using Real Sea Experiments (실선시험기법을 이용한 다방향파중에서의 선박의 응답추정법)

  • 조효제;강일권;김종철
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.135-142
    • /
    • 1998
  • In this study, the frequency transfer function of motions are predicted from the result of a full-scale seakeeping trials. Because the real sea has the characteristics of multi-directional waves,we compare the results in the one directional waves with ones in the directional waves. For calculation of the frequency transfer function in the directional waves, Takezawa's inverse estimation method was introduced and the frequency ranges were divided into three parts in order to consider following seas. The full-scale seakeeping trials was executed in the south sea of Korea using the stern trawler. Those results show that analysis method of the multi-directional waves is more reliable than that of one directional waves, and confirm the possibility of applying this method to the full-scale seakeeping trials.

  • PDF

A Prediction Model for Condensation of Zeotropic Refrigerant Mixtures Inside a Horizontal Smooth Tube (수평평활관내의 비공비 혼합냉매의 응축에 대한 예측모델)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.262-270
    • /
    • 2001
  • This paper deals with a prediction method for the condensation of ternary refrigerant mixture inside a horizontal smooth tube. Based on some reliable assumptions, the governing equations for the local heat and mass transfer characteristics are derived, and the prediction for the condensation of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a, including R407C, is carried out. The local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, mass flux etc. are obtained for a constant wall temperature and a constant wall heat flux conditions, and the effects of the composition of HFC32/HFC125/HFC134a on heat transfer characteristics are examined. The prediction result is also compared with experimental data for condensation of ternary refrigerant mixtures. The predicted wall temperature distribution has a similar trend with experimental data but the predicted local heat transfer coefficients are 20-30% higher than the experimental data.

  • PDF

CLINICAL CONSIDERATION OF INDIRECT BONDING TECHNIQUE (INDIRECT BONDING TECHNIQUE에 대한 고찰)

  • Lee, Kyung Hwan;Kim, Sang Cheol
    • The korean journal of orthodontics
    • /
    • v.19 no.2
    • /
    • pp.155-163
    • /
    • 1989
  • Indirect bonding is done by placing the brackets on a model in the laboratory and using a template or tray to transfer the laboratory positioning to the teeth. The advantages of this technique are 1. decreased chair time 2. less patient discomfort 3. accuracy of a attachment placement 4. good adaptation of attachment to tooth contour 5. occlusal relationship of brackets and opposing teeth can be checked The disadvantages of the technique are 1. complex laboratory procedure 2. sometimes difficult on very short clinical crowns 3. teeth with crowns, large buccal restoration will not bond 4. may not be fitted close, if poor adaptation 5. likely to be disturbed setting Several indirect bonding techniques have proved reliable in clinical practice. However, they differ in the way the brackets are attached temporarily to the model, the type of transfer tray or other mechanism used, the adhesive or sealant employed, whether segmented or full bonding used, and the way the transfer is removed so as not to exert excessive force on a still maturing bond.

  • PDF

Low Work Function and Sharp Field Emitter Arrays by Transfer Mold Fabrication Method

  • Nakamoto, Masayuki;Sato, Genta;Shiratori, Kohji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.1049-1052
    • /
    • 2007
  • Extremely sharp and uniform Transfer Mold FEAs with thin film low work function TiN emitter material have been fabricated by controlling the thickness of the coated emitter materials to realize high efficient, high reliable and low-cost vacuum nanoelectronic devices..Their tip radii are 8.3-13.8 nm. Turn-on electric fields of the Ni FEAs and TiN-FEAs resulted in the low electric field values of $31.6\;V/{\mu}m$ and $44.2V/{\mu}m$,respectively, at the short emitter/anode distance: less than $30\;{\mu}m$, which are lower than those of conventional FE As such as Spindt type FEAs and carbon nan otube FEAs The Transfer Metal Mold fabrication method is one of the best methods of changing emit ter materials with sharp and uniform emit ter shapes.

  • PDF

Analysis on the Thermal Performance of an Ammonia Unit Cooler (암모니아 유니트 쿨러의 열성능 해석)

  • 최재광;김무근;박병규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1125-1133
    • /
    • 2001
  • Since the surface temperature of the evaporating tube in an ammonia unit cooled is lower than the dew point of atmosphere, the moisture in the atmosphere condenses and the frost grows on the tube. The frost of liquid film decreases the heat transfer rate. The reliable analysis of the heat transfer is required for the prediction of the optimal design of the ammonia unit cooler. For the specific commercial model, the performance was numerical1y estimated for the variation of operating condition and geometric configuration. It is found that there exists an optimum range for the parameters such as mass flow rate of air and refrigerant, humidity, refrigerant quality, fin pitch, the number of step, the number of rows and the pattern of refrigerant path.

  • PDF

Investigation of the effects of common and separate ground systems in wireless power transfer

  • Park, Woocheon;Moon, Jung-Ick;Cho, In-kui
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.339-345
    • /
    • 2022
  • This article presents an investigation of the effects on a grounding system of wireless power transfer (WPT) when transmitting over relatively far distances, that is, up to 1.25 m. Conventional two-coil WPT systems are sufficiently commercialized in strong coupling range, but it is important to accomplish the long-range WPT in weak coupling range for further various applications. This system depends on the coupling effect between the two coils that the grounds of the transmitting and receiving coils should be completely separated. However, when evaluating the performance of two-coil systems with the instrument consisting of two ports and one common ground, undesirable problems occur in weak coupling ranges, for example, obtaining disagreeable transmission efficiency and degrading system stability/reliability. We investigate the problems of the leakage power from common ground systems and provide a practical solution to obtain a reliable WPT system by using an isolation transformer. The usefulness of this approach is that it is possible to achieve the stability of the system with relatively far transmitting distances and to determine the exact transmission efficiency.

Heat Transfer Characteristics depending on the Length of a Plate with Pin-Fin Array in a Horizontal Channel (수평채널에서 핀-휜을 가진 평판의 길이변화에 따른 열전달 특성)

  • Son, Young-Seok;Shin, Jee-Young;Lee, Sang-Rog
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2408-2413
    • /
    • 2007
  • Since the heat generation in a chip increases as the components are miniaturized and the computing speed becomes faster, suitable heat dissipation has become one of the primary limiting factors to ensure the reliable operation of the electronic devices. A pin-fin array could be used as an alterative cooling system of the electronic equipment. In this study, convective heat transfer through the pin-fin array is analyzed experimentally based on porous medium approach. The influence of the structure of the pin-fin array including the pin-fin spacing, the pin diameter and plate length on heat transfer characteristics is investigated and compared with the previous analytical results and existing correlation equations. Nowadays, electronic and mechanical devices become smaller and smaller. In this sense, the main purpose of this study is to decide the optimum pin-fin arrangement to get similar heat transfer performance when the length of the existing cooling system is reduced as a half.

  • PDF

Heat kTransfer Modeling and Characteristics Analysis of Impulsed Magnetizing Fisture (임펄스 착자요크의 열전달 모델링 및 특성 해석)

  • 백수현;김필수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.381-387
    • /
    • 1994
  • In this paper, we found the improved SPICE heat transfer modeling of impulsed magnetizing fixture system and investigated temperature characteristics using the proposed model. As the detailed thermal characteristics of magnetizing fixture can be obtained, the efficient design of the impulsed magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important of forecast the characteristics of the magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important to forecast the characteristics of the magnetizing circuits under different conditions. The capacitor voltage was not raised above 810[V] to protect the magnetizing fixture from excessive heating. The purpose of this work is to compute the temperature increasing for different magnetizing conditions. The method uses multi-lumped model with equivalent thermal resistance and thermal capacitance. The reliable results are obtained by using iron core fixture (stator magnet of air cleaner DC motor) coupled to a low-voltage magnetizer(charging voltage : 1000[V], capacitor : 3825[$\mu$F]. The modeling and experimental results are in close aggrement.

  • PDF

Numerical Simulation of Hydrogen Storage System using Magnesium Hydride Enhanced in its Heat Transfer (열전달 특성이 향상된 마그네슘 수소화물을 이용한 수소저장시스템의 전산모사)

  • KIM, SANG GON;SHIM, JAE HYEOK;IM, YEON HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.469-476
    • /
    • 2015
  • The purpose of this work is to investigate main factors to design a solid-state hydrogen stroage system with magnesium hydride with 10 wt% graphite using numerical simulation tools. The heat transfer characteristic of this material was measured in order to perform the highly reliable simulation for this system. Based on the measured effective thermal conductivity, a transient heat and mass transfer simulation revealed that the total performance of hydrogen storage system is prone to depend on heat and mass transfer behaviors of hydrogen storage medium instead of its inherent kinetic rate for hydrogen adsorption. Furthermore, we demonstrate that the thermodynamic aspect between equlibrium presssure and temperature is one of key factor to design the hydrogen storage system with high performance using magnesium hydride.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.