• 제목/요약/키워드: Reliability-Based Topology Optimization

검색결과 35건 처리시간 0.023초

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제37권6호
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

The level set-based topology optimization for three-dimensional functionally graded plate using thin-plate spline

  • Banh, Thanh T.;Luu, Nam G.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.633-649
    • /
    • 2022
  • This paper is first implemented with the bending behavior of three-dimensional functionally graded (3DFG) plates in the framework of level set-based topology optimization (LS-based TO). Besides, due to the suitable properties of the current design domain, the thin-plate spline (TPS) is recognized as a RBF to construct the LS function. The overall mechanical properties of the 3DFG plate are assessed using a power-law distribution scheme via Mori-Tanaka micromechanical material model. The bending response is obtained using the first-order shear deformation theory (FSDT). The mixed interpolation of four elements of tensorial components (MITC4) is also implemented to overcome a well-known shear locking problem when the thickness becomes thinner. The Hamilton-Jacobi method is utilized in each iteration to enforce the necessary boundary conditions. The mathematical formulas are expressed in great detail for the LS-based TO using 3DFG materials. Several numerical examples are exhibited to verify the efficiency and reliability of the current methodology with the previously reported literature. Finally, the influences of FG materials in the optimized design are explained in detail to illustrate the behaviors of optimized structures.

해상풍력발전단지의 전력망과 해상변전소 위치에 대한 최적 설계 (Optimal Design of Power Grid and Location of Offshore Substation for Offshore Wind Power Plant)

  • 문원식;원종남;허재선;조아라;김재철
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.984-991
    • /
    • 2015
  • This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.

높은 신뢰도의 네트워크 설계를 위한 진화 연산에 기초한 알고리즘 (An Algorithm based on Evolutionary Computation for a Highly Reliable Network Design)

  • 김종율;이재욱;현광남
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권4호
    • /
    • pp.247-257
    • /
    • 2005
  • 일반적으로 네트워크 설계 문제는 네트워크의 크기가 늘어남에 따라 지수적으로 복잡도가 증가하여 전통적인 방법으로는 풀이하기 힘든 NP-hard 조합 최적화 문제 중의 하나로 분류될 수 있다. 본 논문에서는 네트워크 신뢰도 제약을 고려하면서 네트워크 구축비용을 효과적으로 최소화하는, 높은 신뢰도의 네트워크 토폴로지 설계 문제를 풀기 위해 스패닝 트리를 효율적으로 표현할 수 있는 Prufer수(PN) 기반의 진화 연산법과 2-연결성을 고려하는 휴리스틱 방법으로 구성된 두 단계의 효율적인 해법을 제안한다. 즉, 먼저 스패닝 트리를 찾아내기 위해 진화 연산법 중에 보편적으로 널리 알려져 있는 유전자 알고리즘(GA)을 이용하고 그 다음으로 첫 번째 단계에서 발견한 스패닝 트리에 대해 최적의 네트워크 토폴로지를 찾기 위해서 2-연결성을 고려한 휴리스틱 방법을 적용한다. 마지막으로 수치예의 결과를 통해 제안한 해법의 성능에 대해서 살펴보도록 한다.

하이드로포밍을 이용한 엔진크래들 최적설계 (The Optimization Design of Engine Cradle using Hydroforming)

  • 오진호;이규민;최한호;박성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.571-575
    • /
    • 2008
  • An engine cradle is a quite important structural assembly for supporting the engine, suspension and steering parts of vehicle and absorbing the vibrations during the drive and the shock in the car crash. Recently, the engine cradle having structural stiffness enough to support the surrounding parts and absorbing the shock of collision has been widely used. The hydroforming technology may cause many advantages to automotive applications in terms of better structural integrity of parts, reduction of production cost, weight reduction, material saving, reduction in the number of joining processes and improvement of reliability. We focus on increasing the durability and the dynamic performance of engine cradle. For realizing this objective, several optimization design techniques such as shape, size, and topology optimization are performed. This optimization scheme based on the sensitivity can provide distinguished performance improvement in using hydroforming.

  • PDF

Delivering IPTV Service over a Virtual Network: A Study on Virtual Network Topology

  • Song, Biao;Hassan, Mohammad Mehedi;Huh, Eui-Nam
    • Journal of Communications and Networks
    • /
    • 제14권3호
    • /
    • pp.319-335
    • /
    • 2012
  • In this study, we design an applicable model enabling internet protocol television (IPTV) service providers to use a virtual network (VN) for IPTV service delivery. The model addresses the guaranteed service delivery, cost effectiveness, flexible control, and scalable network infrastructure limitations of backbone or IP overlay-based content networks. There are two major challenges involved in this research: i) The design of an efficient, cost effective, and reliable virtual network topology (VNT) for IPTV service delivery and the handling of a VN allocation failure by infrastructure providers (InPs) and ii) the proper approach to reduce the cost of VNT recontruction and reallocation caused by VNT allocation failure. Therefore, in this study, we design a more reliable virtual network topology for solving a single virtual node, virtual link, or video server failure. We develop a novel optimization objective and an efficient VN construction algorithm for building the proposed topology. In addition, we address the VN allocation failure problem by proposing VNT decomposition and reconstruction algorithms. Various simulations are conducted to verify the effectiveness of the proposed VNT, as well as that of the associated construction, decomposition, and reconstruction algorithms in terms of reliability and efficiency. The simulation results are compared with the findings of existing works, and an improvement in performance is observed.

다종소재 접합을 위한 SPR(Self-Piercing Riveting)용 C-프레임 강성 최적설계 (Optimal Stiffness Design of Self-Piercing Riveting's C-Frame for Multimaterial Joining)

  • 신창열;이재진;문지훈;권순덕;양민석;이재욱
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.76-84
    • /
    • 2021
  • In this study, an optimal stiffness model of the C-frame, which was supporting the mold and tool load, was proposed to obtain quality self-piercing riveting (SPR) joining. First, the load path acting on the C-frame structure was identified using topology optimization. Then, a final suggested model was proposed based on the load path results. Stiffness and strength analyses were performed for a rivet pressing force of 7.3 [t] to compare the design performance of the final proposed model with that of the initial model. Moreover, to examine the reliability of continuous and repeated processes, vibration analysis was performed and the dynamic stiffness of the final proposed model was reviewed. Additionally, fatigue analysis was performed to ascertain the fatigue characteristics due to simple repetitive loading. Finally, stiffness test was performed for the final proposed model to verify the analysis results. The obtained results differed from the analysis result by 2.9%. Consequently, the performance of the final proposed model was superior to that of the initial model with respect to not only the SPR fastening quality but also the reliability of continuous and repetitive processes.

A Comprehensive Analysis of the End-to-End Delay for Wireless Multimedia Sensor Networks

  • Abbas, Nasim;Yu, Fengqi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2456-2467
    • /
    • 2018
  • Wireless multimedia sensor networks (WMSNs) require real-time quality-of-service (QoS) guarantees to be provided by the network. The end-to-end delay is very critical metric for QoS guarantees in WMSNs. In WMSNs, due to the transmission errors incurred over wireless channels, it is difficult to obtain reliable delivery of data in conjunction with low end-to-end delay. In order to improve the end-to-end delay performance, the system has to drop few packets during network congestion. In this article, our proposal is based on optimization of end-to end delay for WMSNs. We optimize end-to-end delay constraint by assuming that each packet is allowed fixed number of retransmissions. To optimize the end-to-end delay, first, we compute the performance measures of the system, such as end-to-end delay and reliability for different network topologies (e.g., linear topology, tree topology) and against different choices of system parameters (e.g., data rate, number of nodes, number of retransmissions). Second, we study the impact of the end-to-end delay and packet delivery ratio on indoor and outdoor environments in WMSNs. All scenarios are simulated with multiple run-times by using network simulator-2 (NS-2) and results are evaluated and discussed.

다관절 차량의 분산형 제어 시스템을 위한 이더넷 기반 TCN 토폴로지 최적화 (Optimization of TCN-Ethernet Topology for Distributed Control System in Railway Vehicles)

  • 김정태;황환웅;이강원;윤지훈
    • 전자공학회논문지
    • /
    • 제53권9호
    • /
    • pp.38-45
    • /
    • 2016
  • 본 논문은 다관절 철도 차량의 효율성 및 안정성 향상을 위해 분산형 제어 시스템 구축 시 이더넷 기반의 Train Communication Network(TCN) 적용안을 제시하고, 해당 망의 최적 네트워크 토폴로지 구성을 위한 방법론을 제안한다. 적용된 TCN은 백본 망과 하위 망의 계층 구성을 갖고, 하위 망이 관장하는 차량의 수에 따른 전송 딜레이와 안정성을 경유 노드 수와 차량 간 케이블 수로 모델링한다. 이를 기반으로 목적 함수를 정의하고 최적해를 도출하기 위한 방법론을 제시한다. 차량 수의 정수 제약 조건을 완화하여 목적함수의 최적 실수해를 먼저 도출하고, 이로부터 최적 정수해를 탐색하는 방법을 이용한다. 수치 결과를 통해, 도출된 해의 특성을 다양한 관점에서 분석한다.

MEMS용 double-folded 스프링의 회전강성 개선 및 실험 평가 (Experiment characterization of the improvement of the rotational stiffness of the double-folded springs for MEMS structures)

  • 황일한;김좌일;왕세명;이종현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.888-891
    • /
    • 2005
  • Compared to the simple-beam springs, double-folded springs have advantages of the linearity even at the long stroke, so that they have been widely used for optical components such as optical switches and optical attenuators. Until now only the stiffness of the double-folded springs dn the perpendicular direction of the shuttle movement has been considered for the stable operation, however, the rotational stiffness of the splings has not been researched as much. Therefore, this paper suggests the double-folded springs of the maximum rotational stiffness with the constant stiffness in the stroke direction using the reliability based topology optimization (RBTO), whose operation properties were experimentally characterized.

  • PDF