• Title/Summary/Keyword: Reliability sensitivity analysis

Search Result 443, Processing Time 0.034 seconds

Sensitivity Analysis for Reliability Prediction Standard: Focusing on MIL-HDBK-217F, RiAC-HDBK-217Plus, FIDES (신뢰도 예측 규격의 민감도 분석: MIL-HDBK-217F, RiAC-HDBK-217Plus, FIDES를 중심으로)

  • Oh, JaeYun;Park, SangChul;Jang, JoongSoon
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.92-102
    • /
    • 2017
  • Purpose: Reliability prediction standards consider environmental conditions, such as temperature, humidity and vibration in order to predict the reliability of the electronics components. There are many types of standards, and each standard has a different failure rate prediction model, and requires different environmental conditions. The purpose of this study is to make a sensitivity analysis by changing the temperature which is one of the environmental conditions. By observing the relation between the temperature and the failure rate, we perform the sensitivity analysis for standards including MIL-HDBK-217F, RiAC-HDBK-217Plus and FIDES. Methods: we establish environmental conditions in accordance with maneuver weapon systems's OMS/MP and mission scenarios then predict the reliability using MIL-HDBK-217F, RiAC-HDBK-217Plus and FIDES through the case of DC-DC Converter. Conclusion: Reliability prediction standards show different sensitivities of their failure rates with respect to the changing temperatures.

ROBUST RELIABILITY DESIGN OF VEHICLE COMPONENTS WITH ARBITRARY DISTRIBUTION PARAMETERS

  • Zhang, Y.;He, X.;Liu, Q.;Wen, B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.859-866
    • /
    • 2006
  • This study employed the perturbation method, the Edgeworth series, the reliability optimization, the reliability sensitivity technique and the robust design to present a practical and effective approach for the robust reliability design of vehicle components with arbitrary distribution parameters on the condition of known first four moments of original random variables. The theoretical formulae of the robust reliability design for vehicle components with arbitrary distribution parameters are obtained. The reliability sensitivity is added to the reliability optimization design model and the robust reliability design is described as a multi-objection optimization. On the condition of known first four moments of original random variables, the respective program can be used to obtain the robust reliability design parameters of vehicle components with arbitrary distribution parameters accurately and quickly.

Reliability assessment of semi-active control of structures with MR damper

  • Hadidi, Ali;Azar, Bahman Farahmand;Shirgir, Sina
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.131-141
    • /
    • 2019
  • Structural control systems have uncertainties in their structural parameters and control devices which by using reliability analysis, uncertainty can be modeled. In this paper, reliability of controlled structures equipped with semi-active Magneto-Rheological (MR) dampers is investigated. For this purpose, at first, the effect of the structural parameters and damper parameters on the reliability of the seismic responses are evaluated. Then, the reliability of MR damper force is considered for expected levels of performance. For sensitivity analysis of the parameters exist in Bouc- Wen model for predicting the damper force, the importance vector is utilized. The improved first-order reliability method (FORM), is used to reliability analysis. As a case study, an 11-story shear building equipped with 3 MR dampers is selected and numerically obtained experimental data of a 1000 kN MR damper is assumed to study the reliability of the MR damper performance for expected levels. The results show that the standard deviation of random variables affects structural reliability as an uncertainty factor. Thus, the effect of uncertainty existed in the structural model parameters on the reliability of the structure is more than the uncertainty in the damper parameters. Also, the reliability analysis of the MR damper performance show that to achieve the highest levels of nominal capacity of the damper, the probability of failure is greatly increased. Furthermore, by using sensitivity analysis, the Bouc-Wen model parameters which have great importance in predicting damper force can be identified.

Optimal Design of Inverse Electromagnetic Problems with Uncertain Design Parameters Assisted by Reliability and Design Sensitivity Analysis

  • Ren, Ziyan;Um, Doojong;Koh, Chang-Seop
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.266-272
    • /
    • 2014
  • In this paper, we suggest reliability as a metric to evaluate the robustness of a design for the optimal design of electromagnetic devices, with respect to constraints under the uncertainties in design variables. For fast numerical efficiency, we applied the sensitivity-assisted Monte Carlo simulation (S-MCS) method to perform reliability calculation. Furthermore, we incorporated the S-MCS with single-objective and multi-objective particle swarm optimization algorithms to achieve reliability-based optimal designs, undertaking probabilistic constraint and multi-objective optimization approaches, respectively. We validated the performance of the developed optimization algorithms through application to the optimal design of a superconducting magnetic energy storage system.

Studies on a standby repairable system with two types of failure

  • El-Damcese, M.A.;Shama, M.S.
    • International Journal of Reliability and Applications
    • /
    • v.16 no.2
    • /
    • pp.99-111
    • /
    • 2015
  • In this paper, we study the reliability analysis of a repairable system with two types of failure in which switching failures and reboot delay are considered. Let units in this system be cold standby, and failure rate and repair rate of [type1, type2] components be exponentially distributed. The expressions of reliability characteristics - such as the system reliability and the mean time to system failure MTTF - are derived. We use several cases to graphically analyze the effect of various system parameters on the system reliability and MTTF. We also perform a sensitivity analysis of the reliability characteristics with changes in specific values of the system's parameters.

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

Comparison of Reliability Prediction Models for Industrial Tablet PC (산업용 태블릿 PC를 위한 신뢰도 예측 모델 비교)

  • Cho, K.H.;Lee, H.C.;Jang, J.S.;Park, S.C.
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • Purpose: The purpose of this study is to provide a comparison of reliability prediction models between MIL-HDBK-217F and Telcordia SR-332 and to analyze the reliability prediction results. Methods: The reliability of industrial tablet PC was predicted using MIL-HDBK-217F and Telcordia SR-332. To analyze the results, sensitivity analysis was conducted. Results: The reliability of MIL-HDBK-217F was predicted lower than the one of Telcordia SR-332. Considering the factors such as temperature, quality and environment, those provided reliability change of a particular part which highly contribute to the system failure. Conclusion: It is necessary to design the industrial tablet PC that consists of integrated circuits such as microprocessor and memory considering the operating temperature and quality factors.

Sensitivity Analysis of Probabilistic Reliability Evaluation of KEPCO System Using TRELSS (TRELSS를 이용한 한전계통의 확률론적 신뢰도 평가의 감도해석)

  • Tran, T.T.;Kwon, J.J.;Choi, J.S.;Jeon, D.H.;Park, Y.S.;Han, G.N.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.234-236
    • /
    • 2005
  • The importance and necessity conducting studios on grid reliability evaluation have been increasingly important In recent years due to the number of black-out events occurring through in the world. Quantity evaluation of transmission system reliability is very important in a competitive electricity environment. The reason is that the successful operation of electric power under a deregulated electricity market depends on transmission system reliability management. Also in Korea it takes places. The results of many case studios fer the KEPCO system using the Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) Version 6_2, a program developed by EPRI are introduced in this paper. Some sensitivity analysis has been Included in case study. This paper suggests that the some Important input parameters of the TRELSS can be determined optimally from this sensitivity analysis fer high reliability level operation of a system.

  • PDF

Design Sensitivity and Reliability Analysis of Plates (판구조물의 설계감도해석 및 신뢰성해석)

  • 김지호;양영순
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.125-133
    • /
    • 1991
  • For the purpose of efficiently calculating the design sensitivity and the reliability for the complicated structures in which the structural responses or limit state functions are given by implicit form, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis method needed in the reliability-based design is proposed. As numerical examples, two thin plates are analyzed for the cases of plane stress and plate bending. The initial yielding is defined as failure criterion, and applied loads, yield stress, plate thickness, Young's modulus and Poisson's ratio are treated as random variables. It is found that the response variances and the failure probabilities calculated by the proposed PFEM-based reliability method show good agreement with those by Monte Carlo simulation. The probabilistic design sensitivity evaluates explicitly the contribution of each random variable to probability of failure. Further, the design change can be evaluated without any difficulty, and their effect on reliability can be estimated quickly with high accuracy.

  • PDF

Reliability-Based Analysis for Rock Slopes Considering Failure Modes (파괴형태를 고려한 암반사면의 신뢰도해석)

  • 이인모;이명재
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.3-16
    • /
    • 1999
  • This paper presents the results of sensitivity analysis based on an example study to verify a newly developed reliability-based model for rock slopes considering uncertainties of discontinuities and failure modes-plane, wedge, and toppling. The parameters that are needed for sensitivity analysis are the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and the rock slope geometry. The variability in orientation and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a great influence on the rock slope stability, The stability of rock slopes including failure modes is more influenced by the selection of dip direction of cutting rock face than any other design variables, The example study shows that the developed reliability-based analysis model can reasonably assess the stability of rock slope.

  • PDF