• Title/Summary/Keyword: Reliability Sensitivity

Search Result 720, Processing Time 0.028 seconds

Study on Optimum Design for Embankment Construction on Soft Ground Treated by SCP (SCP개량지반상에 성토시공 시 최적설계에 관한 연구)

  • Chae, Jong-gil;Park, Yeong-Mog;Jung, MinSu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.251-258
    • /
    • 2009
  • In this study, the optimum design conditions for embankment construction on soft clay layer improved by soil compaction pile (SCP) are discussed by comparing the practical design method to the reliability design which is based on the loss function and advanced first order second moment (AFOSM) method. The results are summarized as follows; 1) the relationship between safety factor and failure probability becomes heavy exponentially, failure probability decreases rapidly till 1% approximately until safety factor is smaller than 1.2 and after then, failure probability decrease gradually along the increase of the safety factor. The design safety factor of 1.2 may be the critical value that has been established on considering both relationships appropriately, 2) the safety factor of 1.15 at the minimum expected total cost is a little smaller than the design safety factor of 1.2 and the failure probability is about 1%, 3) the sensitivities of the ratio of stress share and the internal friction angle of sand is larger than the variables related the undrained shear strength of soft layer. This result means that the distribution characteristic of n and ${\phi}$ influences on the stability analysis considerably and they should be considered necessarily on stability analysis of embankment on soft layer improved by SCP, 4) new failure points of the input variables at the design safety factor of 1.2(below failure probability of 0.1~0.3%) is far 1~2 times of standard deviation from the initial design values of themselves.

Electrical response of tungsten diselenide to the adsorption of trinitrotoluene molecules (폭발물 감지 시스템 개발을 위한 TNT 분자 흡착에 대한 WSe2 소자의 전기적 반응 특성 평가)

  • Chan Hwi Kim;Suyeon Cho;Hyeongtae Kim;Won Joo Lee;Jun Hong Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.255-260
    • /
    • 2023
  • As demanding the detection of explosive molecules, it is required to develop rapidly and precisely responsive sensors with ultra-high sensitivity. Since two-dimensional semiconductors have an atomically thin body nature where mobile carriers accumulate, the abrupt modulation carrier in the thin body channel can be expected. To investigate the effectiveness of WSe2 semiconductor materials as a detection material for TNT (Trinitrotoluene) explosives, WSe2 was synthesized using thermal chemical vapor deposition, and afterward, WSe2 FETs (Field Effect Transistors) were fabricated using standard photo-lithograph processes. Raman Spectrum and FT-IR (Fourier-transform infrared) spectroscopy reveal that the adsorption of TNT molecules induces the structural transition of WSe2 crystalline. The electrical properties before and after adsorption of TNT molecules on the WSe2 surface were compared; as -50 V was applied as the back gate bias, 0.02 μA was recorded in the bare state, and the drain current increased to 0.41 μA with a dropping 0.6% (w/v) TNT while maintaining the p-type behavior. Afterward, the electrical characteristics were additionally evaluated by comparing the carrier mobility, hysteresis, and on/off ratio. Consequently, the present report provides the milestone for developing ultra-sensitive sensors with rapid response and high precision.

Coronal Three-Dimensional Magnetic Resonance Imaging for Improving Diagnostic Accuracy for Posterior Ligamentous Complex Disruption In a Goat Spine Injury Model

  • Xuee Zhu;Jichen Wang;Dan Zhou;Chong Feng;Zhiwen Dong;Hanxiao Yu
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.641-648
    • /
    • 2019
  • Objective: The purpose of this study was to investigate whether three-dimensional (3D) magnetic resonance imaging could improve diagnostic accuracy for suspected posterior ligamentous complex (PLC) disruption. Materials and Methods: We used 20 freshly harvested goat spine samples with 60 segments and intact surrounding soft tissue. The animals were aged 1-1.5 years and consisted of 8 males and 12 females, which were sexually mature but had not reached adult weights. We created a paraspinal contusion model by percutaneously injecting 10 mL saline into each side of the interspinous ligament (ISL). All segments underwent T2-weighted sagittal and coronal short inversion time inversion recovery (STIR) scans as well as coronal and sagittal 3D proton density-weighted spectrally selective inversion recovery (3D-PDW-SPIR) scans acquired at 1.5T. Following scanning, some ISLs were cut and then the segments were rescanned using the same magnetic resonance (MR) techniques. Two radiologists independently assessed the MR images, and the reliability of ISL tear interpretation was assessed using the kappa coefficient. The chi-square test was used to compare the diagnostic accuracy of images obtained using the different MR techniques. Results: The interobserver reliability for detecting ISL disruption was high for all imaging techniques (0.776-0.949). The sensitivity, specificity, and diagnostic accuracy of the coronal 3D-PDW-SPIR technique for detecting ISL tears were 100, 96.9, and 97.9%, respectively, which were significantly higher than those of the sagittal STIR (p = 0.000), coronal STIR (p = 0.000), and sagittal 3D-PDW-SPIR (p = 0.001) techniques. Conclusion: Compared to other MR methods, coronal 3D-PDW-SPIR provides a more accurate diagnosis of ISL disruption. Adding coronal 3D-PDW-SPIR to a routine MR protocol may help to identify PLC disruptions in cases with nearby contusion.

Uncertainty Calculation Algorithm for the Estimation of the Radiochronometry of Nuclear Material (핵물질 연대측정을 위한 불확도 추정 알고리즘 연구)

  • JaeChan Park;TaeHoon Jeon;JungHo Song;MinSu Ju;JinYoung Chung;KiNam Kwon;WooChul Choi;JaeHak Cheong
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.345-357
    • /
    • 2023
  • Nuclear forensics has been understood as a mendatory component in the international society for nuclear material control and non-proliferation verification. Radiochronometry of nuclear activities for nuclear forensics are decay series characteristics of nuclear materials and the Bateman equation to estimate when nuclear materials were purified and produced. Radiochronometry values have uncertainty of measurement due to the uncertainty factors in the estimation process. These uncertainties should be calculated using appropriate evaluation methods that are representative of the accuracy and reliability. The IAEA, US, and EU have been researched on radiochronometry and uncertainty of measurement, although the uncertainty calculation method using the Bateman equation is limited by the underestimation of the decay constant and the impossibility of estimating the age of more than one generation, so it is necessary to conduct uncertainty calculation research using computer simulation such as Monte Carlo method. This highlights the need for research using computational simulations, such as the Monte Carlo method, to overcome these limitations. In this study, we have analyzed mathematical models and the LHS (Latin Hypercube Sampling) methods to enhance the reliability of radiochronometry which is to develop an uncertainty algorithm for nuclear material radiochronometry using Bateman Equation. We analyzed the LHS method, which can obtain effective statistical results with a small number of samples, and applied it to algorithms that are Monte Carlo methods for uncertainty calculation by computer simulation. This was implemented through the MATLAB computational software. The uncertainty calculation model using mathematical models demonstrated characteristics based on the relationship between sensitivity coefficients and radiative equilibrium. Computational simulation random sampling showed characteristics dependent on random sampling methods, sampling iteration counts, and the probability distribution of uncertainty factors. For validation, we compared models from various international organizations, mathematical models, and the Monte Carlo method. The developed algorithm was found to perform calculations at an equivalent level of accuracy compared to overseas institutions and mathematical model-based methods. To enhance usability, future research and comparisons·validations need to incorporate more complex decay chains and non-homogeneous conditions. The results of this study can serve as foundational technology in the nuclear forensics field, providing tools for the identification of signature nuclides and aiding in the research, development, comparison, and validation of related technologies.

Research of Pattern identification and Outcome Measurement in Atopic Dermatitis (아토피피부염의 변증과 평가방법에 대한 고찰)

  • Son, Byeong-Kook;Choi, In-Hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.3
    • /
    • pp.150-165
    • /
    • 2008
  • Objective : An adequate measurement for Atopic Dermatitis(AD) is essential for studies about the treatment of AD. To establish a new and adequate scoring system for AD in Korean medicine, we reviewed existing studies on AD outcome measurement in Korean medicine. Method : We searched for reviews on measurements of AD or studies which used an AD outcome measurement at the Korean Traditional Knowledge Portal from 1995 to June, 2008. And then we reviewed the pattern identification in AD patients and the outcome measurements for AD in each study. Results : 1. Among 25 studies, the most common measurement for AD was SCORAD(the severity SCORing of Atopic Dermatitis index), there were 16 studies. There was one study which used the Jakob T scoring system, one study which used ADSI(the Atopic Dermatitis Severity Index), and there were 7 studies which established or used a new severity scoring system for AD. 2. In Korean medicine, AD caused by Damp-Heat is accompanied by erythema, papulation, oozing and crust, Damp-Heat accompanied by Spleen-Gi deficiency is frequently found in pediatric patients, and in adults who have indigestion. Symptoms of AD caused by blood deficiency and Wind-Dryness include lichenification, dryness, scale and pigmentation. AD caused by toxic Heat in the blood system has symptoms similar to some Damp-Heat pattern along with symptoms of blood deficiency and Wind-Dryness. Conclusion : We need to establish a new severity scoring system which reflects pattern identifications and treatments with Korean medicine, and we should assess the validity, reliability, and sensitivity of the new scoring system.

  • PDF

Electrostatic discharge simulation of tunneling magnetoresistance devices (터널링 자기저항 소자의 정전기 방전 시뮬레이션)

  • Park, S.Y.;Choi, Y.B.;Jo, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • Electrostatic discharge characteristics were studied by connecting human body model (HBM) with tunneling magnetoresistance (TMR) device in this research. TMR samples were converted into electrical equivalent circuit with HBM and it was simulated utilizing PSPICE. Discharge characteristics were observed by changing the component values of the junction model in this equivalent circuit. The results show that resistance and capacitance of the TMR junction were determinative components that dominate the sensitivity of the electrostatic discharge(ESD). Reducing the resistance oi the junction area and lead line is more profitable to increase the recording density rather than increasing the capacitance to improve the endurance for ESD events. Endurance at DC state was performed by checking breakdown and failure voltages for applied DC voltage. HBM voltage that a TMR device could endure was estimated when the DC failure voltage was regarded as the HBM failure voltage.

A Study on Changes in Cognition and Practice of Undergraduate Students After Taking the Course 'Consumption and Ethics' ('소비와 윤리' 교과목 수강 대학생의 윤리적 소비에 대한 인식과 실천행동의 변화)

  • Chun, Kyung-Hee;Song, In-Sook;Hong, Yeon-Geum;Yoon, Myung-Ae
    • Korean Journal of Human Ecology
    • /
    • v.21 no.3
    • /
    • pp.505-526
    • /
    • 2012
  • The purpose of this research is to investigate changes in ethical consumption practices after taking an undergraduate course 'Consumption and Ethics'. Through Qualitative & Quantitative research methods, students' pre-course and post-course attitudes were compared to understand changes in behavior. Before taking the course 'Consumption and Ethics', undergraduate participants displayed little regard for ethical consumption, instead displaying primary sensitivity to price and values based on self-centered and conspicuous consumption. After taking the course 'Consumption and Ethics', participants displayed a more altruistic awareness of consumption on society and the environment. In addition, participants displayed a stronger sense of pride as ethical consumer. These emerging values were contrasted with conflicting feelings resulting from the higher prices often associated with ethical products, feelings of regret resulting from ethically-based impulse purchases, and an inability to categorically evaluate the reliability of available information on the ethical products. However, participants demonstrated a willingness to practice ethical consumption and recommend ethical consumption to their friends and neighbors. Overall, participants in the study demonstrated a strong shift to be an ethical consumer as a result of taking the course 'Consumption and Ethics'.

Regional Application of the OECD Phosphorus Budget: Comparison of the Input-Output Data Sources (OECD 인 수지 산정법의 지역단위 적용 연구: 유출입 자료 출처 비교)

  • Lim, Do Young;Ryu, Hong-Duck;Chung, Eu Gene;Kim, Yongseok
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1255-1266
    • /
    • 2017
  • Phosphorus (P) is an essential and major nutrient for both plants and animals. However, anthropogenic P in the environment may cause severe problems such as the deterioration of water quality. Therefore, it is essential for the Korean government to manage P in the agricultural sector. The annual P budget for Korea was 46 kg P ha-1 in 2013, placing Korea in second among Organisation for Economic Co-operation and Development (OECD) countries. P surplus and deficiency in agricultural lands can be estimated according to the P budget, which is one of the OECD agri-environment indicators. In the P budget, it is important to ensure consistency in the input-output data sources, in order to apply national and regional policies for the environmentally sound management of agricultural P. This study examines the impacts on the input-output data sources in the regional P budget in Korea. P budgets were between 99-145 kg-P/ha, depending on different data sources. We suggest two recommended data combinations (DC 1 and DC 2) for reliability of the data. P budgets calculated using DC 1 and DC 2 were 128 kg-P/ha and 97 kg-P/ha, respectively. According to the results, one of the core factors affecting P budgets was crop production. In this study, DC 2 was recommended rather than DC 1 in order to consider the cultivated areas for various crops. It is also necessary to analyze the sensitivity of the coefficients used in P budget in the future.

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

Monitoring the water absorption in GFRE pipes via an electrical capacitance sensors

  • Altabey, Wael A.;Noori, Mohammad
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.499-513
    • /
    • 2018
  • One of the major problems in glass fiber reinforced epoxy (GFRE) composite pipes is the durability under water absorption. This condition is generally recognized to cause degradations in strength and mechanical properties. Therefore, there is a need for an intelligent system for detecting the absorption rate and computing the mass of water absorption (M%) as a function of absorption time (t). The present work represents a new non-destructive evaluation (NDE) technique for detecting the water absorption rate by evaluating the dielectric properties of glass fiber and epoxy resin composite pipes subjected to internal hydrostatic pressure at room temperature. The variation in the dielectric signatures is employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such defects. ECS consists of twelve electrodes mounted on the outer surface of the pipe. Radius-electrode ratio is defined as the ratio of inner and outer radius of pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes on the basis of water absorption rate in the pipe material as a function of absorption time. The arrangements for positioning12-electrode sensor parameters such as capacitance, capacitance change and change rate of capacitance are analyzed by ANSYS and MATLAB to plot the mass of water absorption curve against absorption time (t). An analytical model based on a Fickian diffusion model is conducted to predict the saturation level of water absorption ($M_S$) from the obtained mass of water absorption curve. The FE results are in excellent agreement with the analytical results and experimental results available in the literature, thus, validating the accuracy and reliability of the proposed expert system.