• Title/Summary/Keyword: Reliability Propagation

Search Result 228, Processing Time 0.043 seconds

Improved Bitcoin Network Neighbors Connection Algorithm to Reduce Block Propagation Time (블록 전파 시간 단축을 위한 비트코인 네트워크 이웃 연결 알고리즘 개선)

  • Bang, Jiwon;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2020
  • Bitcoin is an electronic money that does not rely on centralized institutions such as banks and financial institutions, unlike the world's paper currencies such as dollar, won, euro and yen. In Bitcoin network, a block with transaction details is generated by mining, and the message that the block has been created is broadcast to all participating nodes in a broadcasting method to secure reliability through verification. Likewise, the mining and block propagation methods in the Bitcoin network are greatly affected by the performance of the P2P network. For example, in the case of mining, the node receiving the reward for mining varies depending on whether the block is first mined in the network and the proof of mining is propagated faster. In this paper, we applied local characteristics and Round-to-Trip(RTT) measurement to solve the problems of the existing neighbor connection method and block propagation method performed in Bitcoin network. An algorithm to improve block propagation speed is presented. Through experiments, we compare the performance of the improved algorithm with the existing algorithm to verify that the overall block propagation time is reduced.

The Study on The Complex Composition By SFCL and Power Equipments for Fault Detection in HVDC Line (HVDC 선로 내 초전도 한류기와 전력기기들의 복합 구성을 통한 고장 검출에 관한 연구)

  • Kim, Myong-Hyon;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1113-1118
    • /
    • 2018
  • Protection in HVDC(High Voltage Direct Current) have the very fast velocity of fault detection. Because Fault in HVDC has the fast propagation, large currents, high interruption cost. The focus to velocity caused possibility of errors like a detection error like a high impedance fault. In this paper, Proposed complex composition for get the reliability and velocity. That used SFCL(Super Conducting Fault Current Limiter), Protection Zone and DTS(Distributed Temperature Sensing). The SFCL was detect the fault by quench and DTS&Protection Zone were perceive the detect by variation too. To examine the proposed method, PSCAD/EMTDC simulated. The results of simulation, proposed methods could the detect of fault to whole HVDC line. And that improved the reliability of fault clearing.

A Hierarchical Model for Mobile Ad Hoc Network Performability Assessment

  • Zhang, Shuo;Huang, Ning;Sun, Xiaolei;Zhang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3602-3620
    • /
    • 2016
  • Dynamic topology is one of the main influence factors on network performability. However, it was always ignored by the traditional network performability assessment methods when analyzing large-scale mobile ad hoc networks (MANETs) because of the state explosion problem. In this paper, we address this problem from the perspective of complex network. A two-layer hierarchical modeling approach is proposed for MANETs performability assessment, which can take both the dynamic topology and multi-state nodes into consideration. The lower level is described by Markov reward chains (MRC) to capture the multiple states of the nodes. The upper level is modeled as a small-world network to capture the characteristic path length based on different mobility and propagation models. The hierarchical model can promote the MRC of nodes into a state matrix of the whole network, which can avoid the state explosion in large-scale networks assessment from the perspective of complex network. Through the contrast experiments with OPNET simulation based on specific cases, the method proposed in this paper shows satisfactory performance on accuracy and efficiency.

Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation (피로균열의 지연거동에 따른 수명예측 및 비파괴평가)

  • Nam, Ki-Woo;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.

VIDEO COLORIZATION BASED ON COLOR RELIABILITY

  • Hyun, Dae-Young;Park, Sang-Uk;Heu, Jun-Hee;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.124-127
    • /
    • 2009
  • In this paper, we proposed automatically video colorization method with partial color sources in first frame. The input color sources are propagated to other gray pixels with the high correlation between two pixels. To robust again the errors in portion of the weak boundary, we calculate correlation between two pixels using dual-path comparison. Video colorization method should maintain the color connectivity between frames. Accordingly, we define reliability of primarily color by compare the color of neighborhood frames. We perform the color correction by blending neighboring color when the reliability of primarily color is low. We formalize this premise with energy function, and find the color to minimize the energy function. In this way, using property of video, we reduce the error caused by propagation and get result of natural changes between frames. Through simulation results, we show the proposed method derive a natural result more than previous method.

  • PDF

Reliability Monitoring of Adhesive Joints by Piezoelectricity (압전특성을 이용한 접착 조인트의 안전성 모니터링)

  • Kwon, Jae-Wook;Chin, Woo-Seok;Lee, Dai-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1388-1397
    • /
    • 2003
  • Since the reliability of adhesively bonded joints for composite structures is dependent on many parameters such as the shape and dimensions of joints, type of applied load, and environment, so an accurate estimation of the fatigue life of adhesively bonded joints is seldom possible, which necessitates an in-situ reliability monitoring of the joints during the operation of structures. In this study, a self-sensor method for adhesively bonded joints was devised, in which the adhesive used works as a piezoelectric material to send changing signals depending on the integrity of the joint. From the investigation, it was found that the electric charge increased gradually as cracks initiated and propagated in the adhesive layer, and had its maximum value when the adhesively bonded joint failed. So it is feasible to monitor the integrity of the joint during its lifetime. Finally, a relationship between the piezoelectric property of the adhesive and crack propagation was obtained from the experimental results.

Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy (마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향)

  • Choi, Seon-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.594-599
    • /
    • 2011
  • In this paper, the effect of the boundary conditions on the reliability and the cumulative distribution characteristics of the fatigue failure life is analyzed in a magnesium alloy AZ31. The boundary conditions are specimen thickness, stress ratio, and maximum fatigue load. The statistical data of the fatigue failure life are obtained by fatigue crack propagation tests under the detail conditions for each boundary condition. The 3-parameter Weibull distribution is used to analyze a statistical characteristics of the fatigue failure life in magnesium alloy AZ31. It is found that the statistical fatigue failure life is long in the case of a thicker specimen, a larger stress ratio, and a smaller maximum fatigue load. Under the opposite cases, the reliability on the fatigue failure life is rapidly dropped.

Reliability Engineering Approach to Fatigue Crack Growth Rate Under Random Loading Using DC Eletrical Potential Method (직류전위차법을 이용한 랜덤하중하의 피로균열 진전율에 대한 신뢰성 공학적 연구)

  • Bae, Sung-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.473-480
    • /
    • 1996
  • Automatic fatigue crack length measuring system using DC electrical potential method and the system control program for automatic fatigue testing under random load condition were made in this study. And using these system and control program, fatigue tests were executed under constant and random load condition. As the result, the propagation of crack in random loading can be represented Paris equaiton and log normal probability function. But constant and random load test show different crack propagation properties.

Implementation and Test of Simulator for Analyzing Effect of GNSS Jamming (GNSS 전파교란 영향분석 시뮬레이터 구현 및 시험)

  • Joo, Inone;Sin, Cheonsig
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • As a dependency on Global Navigation Satellite System (GNSS) becomes increase in various applications, its reliability has been very important. However, in South Korea, Global Positioning System (GPS) jamming incident happened four times since 2010. GNSS signal is so weak that it is highly susceptible to all types of the jamming. GNSS jamming can cause serious damage in the safety-critical applications based on the GNSS. In this paper, we present the GNSS jamming signal propagation prediction simulator based on ITU-R P.1546 model. This simulator is developed for preventing or reducing the damage from the GNSS jamming attack by predicting the jamming propagation strength based on the geographical information in Korean peninsula.