• Title/Summary/Keyword: Relevance Feedback

Search Result 122, Processing Time 0.037 seconds

Relevance Feedback for Content Based Retrieval Using Fuzzy Integral (퍼지적분을 이용한 내용기반 검색 사용자 의견 반영시스템)

  • Young Sik Choi
    • Journal of Internet Computing and Services
    • /
    • v.1 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Relevance feedback is a technique to learn the user's subjective perception of similarity between images, and has recently gained attention in Content Based Image Retrieval. Most relevance feedback methods assume that the individual features that are used in similarity judgments do not interact with each other. However, this assumption severely limits the types of similarity judgments that can be modeled In this paper, we explore a more sophisticated model for similarity judgments based on fuzzy measures and the Choquet Integral, and propose a suitable algorithm for relevance feedback, Experimental results show that the proposed method is preferable to traditional weighted- average techniques.

  • PDF

Semantics Accumulation-Enabled Relevance Feedback (영상에 대한 Semantics 축적이 가능한 Relevance Feedback)

  • Oh, Sang-Wook;Sull, Sang-Hoon;Chung, Min-Gyo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1306-1313
    • /
    • 2005
  • Relevance Feedback(RF), a method to use perceptual feedback in image retrieval, refines a query by the relevance information from a user. However, the user's feedback information is thrown away as soon as a search session ends. So, this paper proposes an enhanced version of RF, which is designed to accumulate human perceptual responses over time through relevance feedback and to dynamically combine the accumulated high-level relevance information with low-level features to further improve the retrieval effectiveness. Experimental results are presented to prove the potential of the proposed RF.

  • PDF

Medical Image Retrieval with Relevance Feedback via Pairwise Constraint Propagation

  • Wu, Menglin;Chen, Qiang;Sun, Quansen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.249-268
    • /
    • 2014
  • Relevance feedback is an effective tool to bridge the gap between superficial image contents and medically-relevant sense in content-based medical image retrieval. In this paper, we propose an interactive medical image search framework based on pairwise constraint propagation. The basic idea is to obtain pairwise constraints from user feedback and propagate them to the entire image set to reconstruct the similarity matrix, and then rank medical images on this new manifold. In contrast to most of the algorithms that only concern manifold structure, the proposed method integrates pairwise constraint information in a feedback procedure and resolves the small sample size and the asymmetrical training typically in relevance feedback. We also introduce a long-term feedback strategy for our retrieval tasks. Experiments on two medical image datasets indicate the proposed approach can significantly improve the performance of medical image retrieval. The experiments also indicate that the proposed approach outperforms previous relevance feedback models.

Support Vector Machine Learning for Region-Based Image Retrieval with Relevance Feedback

  • Kim, Deok-Hwan;Song, Jae-Won;Lee, Ju-Hong;Choi, Bum-Ghi
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.700-702
    • /
    • 2007
  • We present a relevance feedback approach based on multi-class support vector machine (SVM) learning and cluster-merging which can significantly improve the retrieval performance in region-based image retrieval. Semantically relevant images may exhibit various visual characteristics and may be scattered in several classes in the feature space due to the semantic gap between low-level features and high-level semantics in the user's mind. To find the semantic classes through relevance feedback, the proposed method reduces the burden of completely re-clustering the classes at iterations and classifies multiple classes. Experimental results show that the proposed method is more effective and efficient than the two-class SVM and multi-class relevance feedback methods.

  • PDF

Resampling Feedback Documents Using Overlapping Clusters (중첩 클러스터를 이용한 피드백 문서의 재샘플링 기법)

  • Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.247-256
    • /
    • 2009
  • Typical pseudo-relevance feedback methods assume the top-retrieved documents are relevant and use these pseudo-relevant documents to expand terms. The initial retrieval set can, however, contain a great deal of noise. In this paper, we present a cluster-based resampling method to select better pseudo-relevant documents based on the relevance model. The main idea is to use document clusters to find dominant documents for the initial retrieval set, and to repeatedly feed the documents to emphasize the core topics of a query. Experimental results on large-scale web TREC collections show significant improvements over the relevance model. For justification of the resampling approach, we examine relevance density of feedback documents. The resampling approach shows higher relevance density than the baseline relevance model on all collections, resulting in better retrieval accuracy in pseudo-relevance feedback. This result indicates that the proposed method is effective for pseudo-relevance feedback.

An Effective Relevance Feedbackbased Image Retrieval using Color and Texture

  • Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.746-752
    • /
    • 2003
  • In this paper, we proposed an image retrieval system with a simple and effective relevance feedback, called RAP(Reward and Punishment) algorithm. First, color and texture features were extracted from the images. Next, the extracted feature values were used for image retrieval in various forms. We applied the relevance feedback to the initial retrieved images from the image retrieval system, and compared its result with that of the conventional system. In the experiment using the test image database of 16 class 512 images, the proposed system showed the better retrieval performance of about 10∼l7 % than that of the conventional INRIA system in each relevance feedback step.

  • PDF

A Study on the Utility of Relevance/Non-relevance Information in Homogeneous Documents (유사문헌집단에서 적합/부적합정보의 유용성에 관한 연구)

  • Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.3
    • /
    • pp.277-293
    • /
    • 2015
  • This study examined the relative retrieval effectiveness after relevance feedback between two systems (Title/Abstract and Full-text) using four different sets of relevance judgment. Four relevance levels (not relevant, marginally relevant, relevant, highly relevant) are also used, each of which is determined by referees giving a relevance score to documents. This study also investigated how much the average precision was improved after relevance feedback when "marginally relevant" documents are included in the relevant class with the Title/Abstract system, and with the Full-text retrieval system as well. It is found that the Title/Abstract system benefited from relevance feedback with the marginally relevant documents. In case of the Title/Abstract system, the higher percentage of improvement was consistently obtained when including the marginally relevant documents in the relevance class, however the result was vice versa in case of the Full-text retrieval system. It implied that the marginally relevant documents in the relevant class had caused noises in the Full-text retrieval system.

Learning for User Profile Based on Negative Feedback and Reinforcement Learning (부정적 피드백과 강화학습을 이용한 사용자 프로파일 학습)

  • Son, Ki-Jun;Lim, Soo-Yeon;Lee, Sang-Jo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.754-759
    • /
    • 2007
  • The information recommendation system offers selected documents according to information needs of dynamic users. User's needs are expressed as profiles consisting of one or more words and may be changed into some specifics through relevance feedback made by users during the recommendation process. In previous research, users have entered relevance information by taking part in explicit relevance feedbacks and learned user profiles using the positive relevance feedbacks. In this paper, we learn user profiles using not only positive relevance feedback but negative relevance feedback and reinforcement learning. To compare the proposed with previous method, we performed experiments to evaluate recommendation performance of the same topic. As a result, the former shows the improved performance than the latter does.

Content Based Image Retrieval Using Combined Features of Shape, Color and Relevance Feedback

  • Mussarat, Yasmin;Muhammad, Sharif;Sajjad, Mohsin;Isma, Irum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3149-3165
    • /
    • 2013
  • Content based image retrieval is increasingly gaining popularity among image repository systems as images are a big source of digital communication and information sharing. Identification of image content is done through feature extraction which is the key operation for a successful content based image retrieval system. In this paper content based image retrieval system has been developed by adopting a strategy of combining multiple features of shape, color and relevance feedback. Shape is served as a primary operation to identify images whereas color and relevance feedback have been used as supporting features to make the system more efficient and accurate. Shape features are estimated through second derivative, least square polynomial and shapes coding methods. Color is estimated through max-min mean of neighborhood intensities. A new technique has been introduced for relevance feedback without bothering the user.

Genetic Algorithm based Relevance Feedback for Content-based Image Retrieval

  • Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.13-18
    • /
    • 2008
  • This paper explores a content-based image retrieval framework with relevance feedback based on genetic algorithm (GA). This framework adopts GA to learn the user preferences using the similarity functions defined for all available descriptors. The objective of the GA-based learning methods is to learn the user preferences using the similarity functions and to find a descriptor combination function that best represents the user perception. Experiments were performed to validate the proposed frameworks. The experiments employed the natural image databases and color and texture descriptors to represent the content of database images. The proposed frameworks were compared with the other two relevance feedback methods regarding effectiveness in image retrieval tasks. Experiment results demonstrate the superiority of the proposed method.

  • PDF