• Title/Summary/Keyword: Release speed

Search Result 264, Processing Time 0.026 seconds

EXPERIMENTAL STUDY ON THE STRATIFIED COMBUSTION CHARACTERISTICS ACCORDING TO COMPRESSION RATIO AND INTAKE TEMPERATURE IN A DIG ENGINE

  • Lee, C.H.;Lee, K.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.675-680
    • /
    • 2006
  • In the direct injected gasoline engine, atomized spray is desired to achieve efficient mixture formation needed to good engine performance because the injection process leaves little time for the evaporation of fuels. Therefore, substantial understanding of global spray structure and quantitative characteristics of spray are decisive technology to optimize combustion system of a GDI engine. The combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition(SCCI) engine according to intake temperature and compression ratio was examined. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions, which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The mixture stratification and the fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

Fatigue Crack Growth Behavior of NR and HNBR Based Vulcanizates with Potential Application to Track Pad for Heavy Weight Vehicles

  • Kim, Wonho;Kim, Minyoung;Chang, Young-Wook;Shin, Jung-Eun;Bae, Jong-Woo
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.73-79
    • /
    • 2003
  • Generally, field performance of elastomeric track pad components has been poor, especially for the medium to heavy tonnage tracked vehicles, which are operated on the hilly cross-country course. The service life of these track pad, is affected not only by the terrain and environmental conditions but also by the speed, cornering, braking, weight of the vehicle, and the track tread design. In this research, modulus, tearing energy, and the rate of crack propagation of vulcanizates are evaluated by changing base materials to improve the service time of track pad. By increasing the contents of carbon black, modulus, tearing energy, and fatigue crack growth resistance of vulcanizates improved. Compared with the NR vulcanizate, the HNBR vulcanizate had a higher value of tearing energy. The rate of crack propagation of vulcanizates using smaller size carbon black was slower than that using larger size carbon black. When the HNBR was blended with the ZSC, the tearing energy of the vulcanizates was a little reduced because of the high modulus but the crack propagation rate was reduced significantly. In the relation between the crack propagation rate and the strain energy release rate, though up to 100% strain were applied to specimens, the slope on the log scale ($\beta$) varied between 1.72 and 2.3 with the kind of elastomer.

The Effect of Water Compressibility on a Rigid Body Movement in a Water-filled Duct Driven by Compressed Air (압축공기로 움직이는 관 내부 수중 이동물체의 거동에 미치는 물의 압축성 영향)

  • Park, Chan-Wook;Lee, Sung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • The motion of a projectile initiated by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one. The effects of water compressibility on projectile movements are investigated, comparing results based on the Fluent VOF model where water is treated as an incompressible medium with those from the presently developed VOF scheme. The present model considers compressibility of both air and water. The Fluent results show that the body moves farther and at higher speeds than the present ones. As time proceeds, the relative difference of speed and displacement between the two results drops substantially, after acoustic waves in water traverse and return the full length of the tube several times. To estimate instantaneous accelerations, however, requires implementation of the water compressibility effect as discrepancies between them do not decrease even after several pressure wave cycles.

Influence of Propane and Butane on Engine Performance in a Homogeneous Charge Compression Ignition(HCCI) Engine (균질혼합압축점화기관에서 프로판과 부탄연료가 기관성능에 미치는 영향)

  • Choi Gyeung Ho;Kim Ji Moon;Han Sung Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.417-423
    • /
    • 2005
  • This paper describes the engine performance of a Homogeneous Charge Compression Ignition(HCCI) engine according to Exhaust Gas Recirculation(EGR), cylinder-to-cylinder, fuel of propane and butane. HCCI engines are being considered as a future alternative for diesel and gasoline engines. HCCI engines have the potential for high efficiency, very low NOx emissions and very low particulate matter(PM). On experimental work, we have done an evaluation of operating conditions in a 4-cylinder compression engine. The engine has been run with propane and butane fuels at a constant speed of 1800rpm. This work is intended to investigate the HCCI operation of the engine in this configuration that has been modified from the base diesel engine. The performance and emissions of the engine are presented. In this paper, the start of combustion(SOC) is defined as the $50{\%}$ point of the peak rate of heat release. SOC is delayed slightly with increasing EGR. As expected, NOx emissions were very low for all EGR range and nbuned HC and CO emission levels were high. CO and HC emissions are lower with using propane than butane as fuels of HCCI engines.

Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine (천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Park, Seik;Kim, Sungchul;Yoon, Jisoo;Joo, Sungpeel;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Inlet-Air Temperature (흡입공기온도의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기 특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel was injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector was water-cooled by a specially designed coolant passage. The engine performance and emission characteristics were investigated under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, 150 to $180^{\circ}C$ in the inlet-air temperature, and $60^{\circ}$ BTDC in the injection timing. The ultra lean-burn with self-ignition of gasoline fuel by heating inlet air was achieved in a controlled auto-ignition gasoline engine. It could be also achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

Numerical and Experimental Study on the Fire Whirl Characteristics of Oriental Oak Leaves (굴참나무 낙엽의 Fire Whirl 특성에 관한 실험 및 수치해석 연구)

  • Bae, Sung-Yong;Ryou, Hong-Sun;Hong, Gi-Bae
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.73-78
    • /
    • 2009
  • The fire whirl occurring in the urban and/or wildland fire is generated by the instabilities of atmosphere. The fire whirl is a rare phenomenon, but highly destructive because it has high inhalation and lift force. In this study, experimental and numerical studies are performed with oriental oak leaves, for investigating of the fire whirl characteristics occurred in wildland fire. As a result of experiment, the circulation intensity increases as the induced air speed increases, then the heat release rate and flame height increase 22.8%, 18.4% compared with open fire in highest circulation. Furthermore the numerical results shows same trend with the experiment.

A Numerical Study on Combustion-Response Parameters of Impinging-Jet Injectors for Stability Rating (충돌형 분사기의 연소응답 인자 정량화에 관한 수치해석적 연구)

  • Son, Jin Woo;Kim, Chul Jin;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This study presents relations between the time lag and interaction index of the impinging-jet injectors using the time lag model in a model chamber. The response of the flame is analyzed to artificial perturbation with 5% amplitude of oxidizer speed at a resonance frequency. At the mixing point of fuel and oxidizer, which determines the characteristic length, the relationship between velocity perturbation and heat release rate is quantified by combustion parameters of interaction index and time lag. In this method, time lag or delay is calculated by the characteristic length and the average velocity obtained from numerical results. The tendency that the time delay decreases with axial jet velocity has been observed.

TRANSPORT AND DIFFUSION OF POLLUTANTS IN THE COASTAL WATERS OF ONSAN INDUSTRIAL COMPLEX (온산공단 부근의 해양오염물질 이동)

  • CHANG Sun-duck;LEE Jong-Sub;HAN Kyeong-Hwa
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.151-162
    • /
    • 1980
  • To clarify the dispersion of pollutants introduced in the coastal region, a series of current measurements, the drogue and drift bottle experiments as well as the dye diffusion experiments were carried out in Onsan Bay and in the coastal waters of Ubong-ri near Ulsan. In the southeastern coastal region of Korean peninsula, that is, in the outside of Onsan Bay, the flood tidal current flows south-south-westward, and the ebb current flows north-north-eastward at a maximum speed of 1.0-1.1 knots at spring tide. In an inlet south of Cape Ubong, an anticyclonic eddy of 1 km in diameter is usually formed during both flood and ebb flows. The tidal current predominates in Onsan Bay at around spring tide. The maximum speed around spring tide was observed to be approximately 0.14 knot, while it was slower than 0.1 knot and variable at neap tide when the wind drift current played an important role. The flood tidal current flows westward while the ebb flow flows eastward in the northern region of the bay. The flood tidal current in the southern region of the bay flows west-north-westward, while the ebb current east-north-eastward. Wind drift currents in the coastal region of southern Korea are generally deduced to be southward in winter, the monthly mean speed being approximately 0.1 knot. Dye solution released at the northwestern corner in Onsan Bay was transported by eastward ebb tidal current toward the mouth of the bay dispersing by the wind. The apparent diffusion coefficient at 150 minutes after release in the bay was calculated to be $4.4\times10^4\;cm^2.sec^{-1}$, whereas that in the anticyclonic eddy was more or less smaller.

  • PDF

Influence of Statistical Compilation of Meteorological Data on Short-Term Atmospheric Dispersion Factors in a Hypothetical Accidental Release of Nuclear Power Plants (기상자료의 통계처리방법이 원자력발전소의 가상 사고시 단기 대기확산인자에 미치는 영향)

  • Hwang, Won-Tae;Kim, Eun-Han;Jeong, Hae-Sun;Jeong, Hyo-Joon;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.116-122
    • /
    • 2012
  • A short-term atmospheric dispersion factor (${\chi}/Q$) is an essential element for radiological dose assessment following a hypothetical accidental releases of light-water nuclear power plants. The U. S. NRC developed PAVAN program to comply with the U. S. NRC's Regulatory Guide 1.145. Meteorological data is an essential element for atmospheric dispersion, and PAVAN uses a joint frequency distribution data, which represents the occurrence probability of wind speed and wind direction for atmospheric stability. Using the meteorological data measured at Kori and Wolsung sites for the last 5 years (from 2006 to 2010), a variety of joint frequency distribution data were prepared to evaluate ${\chi}/Q$ values with different wind speed classifications (U. S. NRC's recommendation and even distribution of occurrence probability) and periods of meteorological data to be analyzed (1 year, 2 year, 3 year, 4 year, 5 year). As a result, it was found that the influence of the wind speed classification on ${\chi}/Q$ values is little, while the influence of the periods of meteorological data to be analyzed is relatively significant, representing more than 1.5 times in the ratio of maximum to minimum values.