• Title/Summary/Keyword: Release properties

Search Result 866, Processing Time 0.03 seconds

Dynamic Propagation of a Interface Crack in Functionally Graded Layers under Anti-plane Shear (면외전단하중이 작용하는 기능경사재료 접합면 균열의 동적전파에 관한 연구)

  • Shin, Jeong-Woo;Lee, Young-Shin;Kim, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.459-464
    • /
    • 2010
  • The dynamic propagation of an interface crack between two dissimilar functionally graded layers under anti-plane shear is analyzed using the integral transform method. The properties of the functionally graded layers vary continuously along the thickness. A constant velocity Yoffe-type moving crack is considered. Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented. Followings are helpful to increase of the resistance of the interface crack propagation of FGM: a) increase of the gradient of material properties; b) increase of the material properties from the interface to the upper and lower free surface; c) increase of the thickness of FGM layer. The DERR increases or decreases with increase of the crack moving velocity.

  • PDF

Control of Encapsulation Efficiency and Initial Burst in Polymeric Microparticle Systems

  • Yeo, Yeon;Park, Ki-Nam
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Initial burst is one of the major challenges in protein-encapsulated microparticle systems. Since protein release during the initial stage depends mostly on the diffusional escape of the protein, major approaches to prevent the initial burst have focused on efficient encapsulation of the protein within the microparticles. For this reason, control of encapsulation efficiency and the extent of initial burst are based on common formulation parameters. The present article provides a literature review of the formulation parameters that are known to influence the two properties in the emulsion-solvent evaporation/extraction method. Physical and chemical properties of encapsulating polymers, solvent systems, polymer-drug interactions, and properties of the continuous phase are some of the influential variables. Most parameters affect encapsulation efficiency and initial burst by modifying solidification rate of the dispersed phase. In order to prevent many unfavorable events such as pore formation, drug loss, and drug migration that occur while the dispersed phase is in the semi-solid state, it is important to understand and optimize these variables.

Formulation and Pharmaceutical Properties of Local Mucoadhesive-Patch Preparation (국소치료용 구강점막패취의 제제설계 및 약제학적 특성)

  • Lee, Gye-Ju;Shu, Hyun-Joo;Lee, Duck-Geun;Park, Jong-Bum;Shin, Kwang-Hyun;Hwang, Sung-Joo
    • YAKHAK HOEJI
    • /
    • v.42 no.2
    • /
    • pp.187-195
    • /
    • 1998
  • In order to ameliorate disadvantages of buccal ointments and mucoadhesive tablets used for the treatment of aphthosis, a thin mucoadhesive patch containing triamcinolone acetoni de was designed and evaluated for the pharmaceutical properties. The adhesive gel layer consisting of Noveon AA-1, hydroxypropylcellulose-M and ethylcellulose N 100, and the protective gel layer of ethylcellulose N 100, Eudragit RSPO and castor oil have been formulated and various properties such as viscosity of drug gel layer, thickness, in vitro adhesion time, adhesive strength, surface pH, content uniformity and drug release are tested. The mean viscosity of drug-containing gel layer was found to increase with increasing amount of Noveon OAA-1 or hydroxypropylcellulose-M. The optimum formulation showed the thickness of 171 ${\mu}$m, surface pH of 4.6, in vitro adhesion time of 8 hours and adhesive strength of 272.7g/sheet. The drug content of each patch was relatively homogeneous with the value of 273${\pm}$6.77g. Drug release study showed that compared to mucoadhesive tablet, the patch showed a faster drug release. Drug release was delayed by hydroxypropylcellulose-M, but not by ethylcellulose N 100. The patches prepared were nonirritant and the muco adhesion was better than the commercial product (AftachR) on the market. Based on these results, this mucoadhesive patch is expected to be an effective dosage form for the treatment of aphthosis.

  • PDF

Study on the Thermal Properties of Epoxy Resin Compositions having Conjugated Double Bond in Backbone (공액이중결합의 골격구조를 갖는 에폭시수지 경화물의 열특성에 관한 연구)

  • Lee, KyoungEun;Yoo, Min Jae;Kim, Young Chul
    • Journal of Adhesion and Interface
    • /
    • v.14 no.3
    • /
    • pp.135-145
    • /
    • 2013
  • Epoxy resin compositions were studied on the view of self-extinguishing properties without retardant additives and suitability as materials of eco-friendly EMC (Epoxy molding compound). Cured epoxy and phenolic resin composition having conjugated double bond of aromatic structure exhibited self-extinguishing properties and low heat release capacity. In this study, the structure of long conjugated double bond of hetero-atom type azomethyne group between conjugated double bonds of aromatic structure showed lower heat release capacity. Low heat release capacity seemed to be related with high reaction enthalpy, $T_g$ and reactivity affected by hetero-atom structure in azomethyne group.

Fabrication and Characterization of Flurbiprofen loaded Chitosan Beads for Periodontal Regeneration (치주조직 재생용 플루르비프로펜 함유 키토산 비드의 제조 및 용출특성)

  • Rhee, Su-Jin;Park, Yoon-Jeong;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 1997
  • With the aim of improving periodontal regeneration efficacy, as a biodegradable local drug delivery device, drug releasing chitosan beads were prepared. Chitosan beads were prepared through the formation of intermolecular or intramolecular ionic interaction bewteen chitosan and sodium tripolyphosphate and were loaded with flurbiprofen. The mean diameter of the beads was $250\;{\mu}m$. Drug loading efficiency was improved by regulating the pH of tripolyphosphate solution. The drug release kinetics mainly depended upon the hydrophobic properties of the flurbiprofen, that is, the release of flurbiprofen showed initial burst with rapid release for the first day followed by a levelling off of the release rate. However, the release rate could be controlled by the formulation factor including the pH, concentration of the tripolyphosphate solution, gelation time, drug contents. From these results, flurbiprofen loaded chitosan beads were anticipated as biodegradable local drug delivery devices for periodontal regeneneration.

  • PDF

A Study on the Properties of Hollow Silica Microspheres for Controlled-release Pesticide Formulation (농약 방출 조절제 소재로서 실리카 중공 미세구의 물성연구)

  • Jung, Byoung-Soo;Park, Yong-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.319-324
    • /
    • 2004
  • Pesticide formulations for controlled release were pepared with hollow silica microspheres. The hollow microsphere, which was obtained through calcination for the core removed after silica coating, showed maximum impregnation of benfuracarb up to 2.7 times of its mass in comparison with those obtained through the other core removal method. The release test of the pesticide formulation, when used with ESO(Epoxidized Soybean Oil) as a binder, showed ideal release pattern with steady release rate from the day 10 to 30 retaining the benfuracarb concentration in the water around 1.65 ppm.

Multilayered frame structure subjected to non-linear creep: A delamination analysis

  • Rizov, Victor I.;Altenbach, Holm
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.217-231
    • /
    • 2022
  • The present paper is concerned with a delamination analysis of a multilayered frame structure that exhibits non-linear creep behavior. A solution to the strain energy release rate is obtained by considering the time-dependent complementary strain energy in the frame. The mechanical behavior of the frame is treated by using a non-linear stress-strain-time relationship. The time-dependent solution to the strain energy release rate obtained in the present paper holds for a multilayered frame made of arbitrary number of adhesively bonded layers of different thicknesses and material properties. Besides, the dealamination is located arbitrary along the thickness. The solution to the strain energy release rate is verifiedby applying the J-integral approach. A parametric study of the strain energy release rate is carried-out. Two three-layered frame configurations are analyzed in order to evaluate the influence of the delamination crack location along the thickness on the strain energy release rate. The strain energy release is analyzed also for the case when a notch is cut-out in the inner delamination crack arm. The results obtained are compared with these for a frame without a notch.

Combustion-Retardation Properties of Low Density Polyethylene and Ethylene Vinyl Acetate Mixtures with Magnesium Hydroxide (수산화마그네슘이 첨가된 저밀도 폴리에틸렌과 에틸렌 비닐 아세테이트 혼합물의 난연성)

  • Chung, Yeong-Jin;Lim, Hyung Mi;Jin, Eui;Oh, JungKyoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.439-443
    • /
    • 2011
  • It was performed to test the combustive properties of low density polyethylene and ethylene vinyl acetate (LDPE-EVA) mixture by the addition of magnesium hydroxide. Flame retardant of natural magnesium hydroxide was added to the mixture of LDPE-EVA in 40 to 80 wt% concentration. The composite was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). Comparing with virgin LDPE-EVA, the specimens including the magnesium hydroxide had lower combustive properties. It is supposed that the combustion-retardation properties in the composites improved due to the endothermic decomposition of magnesium hydroxide. The specimens with magnesium hydroxide showed both the lower peak heat release rate (PHRR) and lower effective heat of combustion (EHC) than those of virgin polymer. As the magnesium hydroxide content increases, time to ignition increased and the peak heat release rate decreased.

Calcium release and physical properties of modified carbonate apatite cement as pulp capping agent in dental application

  • Zakaria, Myrna Nurlatifah;Cahyanto, Arief;El-Ghannam, Ahmed
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.346-351
    • /
    • 2018
  • Background: Carbonate apatite ($CO_3Ap$) and silica-calcium phosphate composite (SCPC) are bone substitutes with good prospect for dental application. SCPC creates a hydroxyapatite surface layer and stimulate bone cell function while, $CO_3Ap$ induce apatite crystal formation with good adaptation providing good seal between cement and the bone. Together, these materials will add favorable properties as a pulp capping material to stimulate mineral barrier and maintain pulp vitality. The aim of this study is to investigate modification of $CO_3Ap$ cement combined with SCPC, later term as $CO_3Ap-SCPC$ cement (CAS) in means of its chemical (Calcium release) and physical properties (setting time, DTS and pH value). Methods: The study consist of three groups; group 1 (100% calcium hydroxide, group 2 $CO_3Ap$ (60% DCPA: 40% vaterite, and group 3 CAS (60% DCPA: 20% vaterite: 20% SCPC. Distilled water was employed as a solution for group 1, and $0.2mol/L\;Na_3PO_4$ used for group 2 and group 3. Samples were evaluated with respect to important properties for pulp capping application such as pH, setting time, mechanical strength and calcium release evaluation. Results: The fastest setting time was in $CO_3Ap$ cement group without SCPC, while the addition of 20% SCPC slightly increase the pH value but did not improved the cement mechanical strength, however, the mechanical strength of both $CO_3Ap$ groups were significantly higher than calcium hydroxide. All three groups released calcium ions and had alkaline pH. Highest pH level, as well as calcium released level, was in the control group. Conclusion: The CAS cement had good mechanical and acceptable chemical properties for pulp capping application compared to calcium hydroxide as a gold standard. However, improvements and in vivo studies are to be carried out with the further development of this material.

Sustained Release Properties of Vitamin C in Chitosan Molecular network (키토산 분자네트 워크속에서 비타민 C의 지속적 방출 특성)

  • Han Sang-Mun
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.2 s.56
    • /
    • pp.33-38
    • /
    • 2005
  • Chitosan is a dietary fiber because of a linear polysaccharide composed of $\beta-(1{\rightarrow}4)$-linked 2-amino-2-deoxy-D-glucopyranose. In this study, control release system of vitamin C has been estimated in chitosan molecular network as a vitamin C carrier of controlled release. The amount of released vitamin C were decreased in higher amount of chitosan concentration. Especially, vitamin C were slowly released from chitosan solution in dialysis membrane when compared with vitamin C solution alone in dialysis membrane. These result assumed that chitosan driving force is dependent on chitosan molecular weight and cationic property of amino group with anionic property of vitamin C.