• Title/Summary/Keyword: Release mechanism

Search Result 906, Processing Time 0.026 seconds

Effects of Linderae Radix extract on Arterial Contraction in Rabbit (오약(烏藥)이 토끼의 수축혈관에 미치는 영향)

  • Lee, Hyun-Ju;Jo, Hak-Jun;Kim, Ho-Hyun
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.1
    • /
    • pp.97-107
    • /
    • 2005
  • Objectives : This experiments were performed to determine the effect of Linderae Radix extract on norepinephrine-induced arterial contraction in rabbit. Methods : In order to investigate the effect of Linderae Radix extract on contracted rabbit carotid arterial strips, transverse strips with intact or damaged endothelium were used for the experiment using organ bath. To analyze the mechanism of Linderae Radix extract-induced relaxation, Linderae Radix extract infused into contracted arterial strips induced by norepinephrine after treatment of indomethacin, tetraethylammonium chloride, $N{\omega}-nitro-L-arginine$ or methylene blue. Results : Linderae Radix extract relax arterial strip with endothelium contracted by norepinephrine, but in the strips without endothelium, Linderae Radix extract-induced relaxation was significantly inhibited. Linderae Radix extract-induced relaxation was decreased by the pre-treatment of $N{\omega}-nitro-L-arginine$ or methylene blue, but it was not observed in the strips pre-treated with indomethacin or tetraethylammonium chloride. When $Ca^{2+}$ was applied, the strips which were contracted by norepinephrine in a $Ca^{2+}$-free solution, arterial contraction was increased. But pre-treatment of Linderae Radix extract inhibited contractile response to norepinephrine and $Ca^{2+}$. Conclusions : We suggest that Linderae Radix may suppress influx of extra-cellular $Ca^{2+}$ through the formation of nitric oxide, and release of intra-cellular $Ca^{2+}$.

  • PDF

WHAT MAKES A RADIO-AGN TICK? TRIGGERING AND FEEDING OF ACTIVE GALAXIES WITH STRONG RADIO JETS

  • KAROUZOS, MARIOS;IM, MYUNGSHIN;KIM, JAE-WOO;LEE, SEONG-KOOK;CHAPMAN, SCOTT
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.447-449
    • /
    • 2015
  • Although the link between activity in the nuclei of galaxy and galactic mergers has been under scrutiny for several years, it is still unclear to what extent and for which populations of active galaxies merger-triggered activity is relevant. The environments of AGN allow an indirect probe of the past merger history and future merger probability of these systems, suffering less from sensitivity issues when extended to higher redshifts than traditional morphological studies of AGN host galaxies. Here we present results from our investigation of the environment of radio selected sources out to a redshift z=2. We employ the first data release J-band catalog of the new near-IR Infrared Medium-Deep Survey (IMS), 1.4 GHz radio data from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey and a deep dedicated VLA survey of the VIMOS field, covering a combined total of 20 sq. degrees. At a flux limit of the combined radio catalog of 0.1 mJy, we probe over 8 orders of magnitude of radio luminosity. Using the second closest neighbor density parameters, we test whether active galaxies inhabit denser environments. We find evidence for a sub-population of radio-selected AGN that reside in significantly overdense environments at small scales, although we do not find significant overdensities for the bulk of our sample. We show that radio-AGN in the most underdense environments have vigorous ongoing star formation. We interpret these results in terms of the triggering and fuelling mechanism of radio-AGN.

A novel F-box protein with leucine-rich repeats affects defecation frequency and daumone response in Caenorhabditis elegans

  • Kim, Sung-Moon;Jang, Sang-Ho;Son, Na-Rae;Han, Ching-Tack;Min, Kwan-Sik;Lee, Hak-Kyo;Hwang, Sue-Yun
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.280-288
    • /
    • 2012
  • Targeted degradation of proteins through ubiquitin-mediated proteolysis is an important control mechanism in various cellular processes. The process of ubiquitin conjugation is achieved by three enzyme complexes, among which the ubiquitin ligase complex (E3) is in charge of substrate specificity. The SCF (SKP1-CUL1-F-box) family portrays the largest and the most characterized member of the E3 ligases. For each SCF complex, the ubiquitination target is recognized by the F-box protein subunit, which interacts with the substrate through a unique C-terminal domain. We have characterized a novel F-box protein CFL-1 that represents a single LRR-type F-box (FBXL) in the Caenorhabditis elegans genome. CFL-1 is highly homologous to FBXL20 and FBXL2 of mammals, which are known to regulate synaptic vesicle release and cell cycle, respectively. A green fluorescence protein (GFP)-reporter gene fused to the cfl-1 promoter showed restricted expression around the amphid and the anus. Modulation of CFL-1 activity by RNAi affected the time interval between defecations. RNAi-treated worms also exhibited reduced tendency to form dauer when exposed to daumone. The potential involvement of CFL-1 in the control of defecation and pheromone response adds to the ever expanding list of cellular processes controlled by ubiquitin-mediated proteolysis in C. elegans. We suggest that CFL-1, as a single LRR-type F-box protein in C. elegans, may portray a prototype gene exerting diverse functions that are allocated among multiple FBXLs in higher organisms.

The Action of Ginkgo Bibloba Extract in the Isolated Rabbit Corpus Cavernosum

  • Chung, Woo-Sik;Choi, Young-Deuk;Park, Young-Yo;Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 1995
  • The extract of Ginkgo bibloba (EGb) is a complex mixture of natural products from the Ginkgo leaves and clinically used for the treatment of cerebral and peripheral circulatory disturbances due to its combined activity of several vasoactive principles. In this study we investigated the action of EGb and its mechanism in isolated rabbit corporal smooth muscle to evaluate the possibility of using this material as a pharmacoerecting agent. Strips of rabbit corpus cavernosum were mounted in organ chambers to measure isometric tension. EGb began to exert an relaxing effect at 1 mg/ml in the submaximally precontracted muscle strips with phenylephrine $(PHE,\;5{\times}10^{-6}\;M)$; causing concentration-dependent relaxation with maximal effect at $3{\sim}5\;mg/ml$. That relaxation was partially inhibited by removal of the smooth muscle endothelium or by pretreatment with a NO scavenger, pyrogallol $(10^{-4}\;M)$ or the guanylate cyclase inhibitor, methylene blue $(10^{-4}\;M)$. Pretreatment with EGb (3 mg/ml) inhibited PHE- $(5{\times}10^{-6}\;M)$ or KCI- (20 and 40 mM) induced contraction of muscle strip. In calcium-free high potassium solution EGb depressed the basal tone of the depolarized muscle strip and inhibited calcium-induced contraction when $CaCl_2$ $(10^{-4}\;M)$ was added. These results suggest that EGb relaxes rabbit corpus cavernosal smooth muscle through multiple action mechanisms that include increasing the release of nitric oxide from the corporal sinusoidal endothelium, sequestration of intracytosolic calcium, and maybe a hyperpolarizing action.

  • PDF

Anti-inflammatory Activity of Medicinal Plant Extracts (약용식물자원 추출물의 항염증활성)

  • Lee, Seung-Eun;Lee, Jeong-Hoon;Kim, Jin-Kyung;Kim, Geum-Sook;Kim, Young-Ok;Soe, Jin-Sook;Choi, Je-Hun;Lee, Eun-Suk;Noh, Hyung-Jun;Kim, Seung-Yu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.4
    • /
    • pp.217-226
    • /
    • 2011
  • The study was conducted to investigate candidate materials as anti-inflammation agent from plant resources. Activities of 33 plant parts extracts with the final concentration of 5${\mu}g/ml$ were evaluated on the several inflammation-related markers such as the release of proinflammatoty cytokine [tumor necrosis factor-alpha (TNF-${\alpha}$) & interleukin-6 (IL-6)], nitric oxide (NO), the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and inhibitor of nuclear factor kappa-B alpha ($I{\kappa}-B{\alpha}$) in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The extracts in the final concentration of 10 ${\mu}g/ml$ were also screened on peroxynitrite (ONOO$^-$) scavenging activity. Eleven extracts selected from the screening assay were verified on the inhibition activity on peroxynitrite and total reactive species oxygen (ROS) in the several concentrations. As results, Alpinia officinarum Hance (rhizome), Inula britannica var. chinensis Regel (flower), Ulmus arvifolia Jacq (trunk peel) and Aster scaber Thunb. (aerial part) showed comparatively potent anti-inflammatory activities in vitro cells or chemical level systems, and then these four plant parts should be studied on the antiinflammatory mechanism by further studies.

Design and testing of the KC-100 Spin Recovery Parachute System (SRPS)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Kyung-Woo;Lee, Ju-Ha;Kim, Su-Min;Kwon, Young-Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison of parachute on the high speed taxiing were performed.

Inhibitory Effect of Caffeine on Carbachol-Induced Nonselective Cationic Current in Guinea-Pig Gastric Myocytes

  • Kim, Sung-Joon;Min, Kyung-Wan;Kim, Young-Chul;Lee, Sang-Jin;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.353-359
    • /
    • 1998
  • In gastrointestinal smooth muscle, muscarinic stimulation by carbachol (CCh) activates nonselective cation channel current ($I_{CCh}$) which is facilitated by intracellular [$Ca^{2+}$] increase. Caffeine is widely used in experiments to mobilize $Ca^{2+}$ from intracellular stores. This study shows a strong inhibitory effect of caffeine on $I_{CCh}$ in guinea-pig gastric myocyte. In this study, the underlying mechanism of the inhibitory effect of caffeine was investigated. $I_{CCh}$ was completely suppressed by the addition of caffeine (10 mM) to the superfusing solution. Inhibition of $I_{CCh}$ by caffeine was not related to the intracellular cAMP accumulation which was expected from the phosphodiesterase-inhibiting effect of caffeine. The blockade of $InsP_3-induced$ $Ca^{2+}$ release by heparin had no significant effects on the activation of $I_{CCh}$. When the same cationic current had been induced by intracellular dialysis of $GTP[{\gamma}S]$ in order to bypass the muscarinic receptor, the inhibitory effect of caffeine was significantly attenuated. The results of this study indicate that both intracellular signalling pathways for $I_{CCh}$, proximal and distal to G-protein activation, are suppressed by caffeine. A major inhibition was observed at the proximal level.

  • PDF

Involvement of Caspases and Bcl-2 Family in Nitric Oxide-Induced Apoptosis of Rat PC12 Cells

  • Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Cho, Jin-Hyoung;Lee, Guem-Sug;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2006
  • This study was aimed to investigate the nitric oxide (NO)-induced cytotoxic mechanism in PC12 cells. Sodium nitroprusside (SNP), an NO donor, decreased the viability of PC12 cells in dose-and time-dependent manners. SNP enhanced the production of reactive oxygen species (ROS), and gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. Expression of Bax was not affected, whereas Bcl-2 was downregulated in SNP-treated PC12 cells. SNP augmented the release of cytochrome c from mitochondria into cytosol and enhanced caspase -8, -9, and -3 activities. SNP upregulated both Fas and Fas-L, which are known to be components of death receptor assembly. These results suggest that NO induces apoptosis of PC12 cells through both mitochondria-and death receptor-mediated pathways mediated by ROS and Bcl-2 family.

Peptidoglycan Induces the Production of Interleukin-8 via Calcium Signaling in Human Gingival Epithelium

  • Son, Aran;Shin, Dong Min;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of grampositive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentration-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells.

Roles of Non-cholinergic Intrapancreatic Nerves, Serotonergic Nerves, on Pancreatic Exocrine Secretion in the Isolated Perfused Rat Pancreas

  • Jiang, Zheng Er;Shin, Bich-Na;Kim, In-Hye;Lee, Hyun-Joo;Yong, Jun-Hwan;Lee, Min-Jae;Won, Moo-Ho;Lee, Yun-Lyul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.307-312
    • /
    • 2011
  • It has been rereported that axons which display 5-hydroxytryptamine (5-HT) immunoreactivity are abundant in the pancreas and the majority of serotonergic axons terminate within intrapancreatic ganglia, islet and acini. This histological result strongly suggests that intrapancreatic serotonergic nerves could affect to the pancreatic endocrine and exocrine secretion. Thus, this study was aimed to investigate whether intrapancreatic serotonergic nerves could affect pancreatic exocrine secretion and an action mechanism of the intrapancreatic serotonergic nerves. The rats were anesthetized with a single injection of urethane. The median line and the abdominal aorta was carefully dissected and cannulated with PE-50 tubing just above the celiac artery, and then tightly ligated just below the superior mesenteric artery. The pancreatic duct was also cannulated with Tygon microbore tubing. With the addition of serotonin, pancreatic volume flow and amylase output were significantly inhibited electrical field stimulation (EFS). On the other hand, pancreatic volume flow and amylase output were significantly elevated in EFS with the addition of spiperone. EFS application, however, pancreatic volume flow and amylase output had no significant change in cholecystokinin (CCK) alone when serotonin was applied under a 5.6 mM glucose background. Pancreatic volume flow and amylase output under 18 mM glucose background were significantly elevated in CCK plus serotonin than in CCK alone. These data suggest that intrapancreatic serotonergic nerves play an inhibitory role in pancreatic exocrine secretion and an important role in the insulin action or release.