• 제목/요약/키워드: Release Torque

검색결과 31건 처리시간 0.023초

다회수 스파크 점화기관의 기관성능에 관한 연구 (A study on the engine performance in a multiple spark ignition engine)

  • 이성열;한병호
    • 오토저널
    • /
    • 제10권4호
    • /
    • pp.66-74
    • /
    • 1988
  • The ignition quality of ignition system is influenced by spark energy, discharge pattern of spark energy and spark duration. In this paper, the characteristics of multiple spark ignition system have been investigated for various number of spark and spark interval. The results, which were compared with those obtained with a standard single spark ignition, show that engine output is increased, and lean misfire limit is extended with the multiple spark ignition system. The most effective number of spark at the most effective spark interval that are determined by engine performance test, were 6 times spark at 0.02ms spark interval. For the above condition of spark, engine torque was increased about 20% comparing with conventional ignition system and lean misfire limit was extended to air-fuel ratio 22.5:1. This study researched the rate of heat release and quantity of heat release influenced by a condition of spark on the mass burned in order to investigate the relationship between the rate of mass burned and number of spark times.

  • PDF

초소형 쎄레이션 볼트의 체결성능 분석 (Investigation of Fastening Performance of Subminiature Serrated Bolt)

  • 장명근;정진환;장연희;김희철;김종봉
    • 대한기계학회논문집A
    • /
    • 제41권4호
    • /
    • pp.257-262
    • /
    • 2017
  • 최근 스마트 폰, 스마트 와치 등과 같은 전자기기의 크기가 작아지면서, 그에 사용되는 체결 볼트의 크기 또한 작아지고 있다. 초소형 나사는 제품을 체결하는 데 있어 충분한 체결 토크나 풀림 방지효과를 갖지 못한다. 그래서 초소형 나사의 체결력과 풀림방지 효과를 유지 및 강화하는 연구가 필요하다. 본 연구에서는 초소형 나사의 풀림방지 효과를 강화하기 위해 나사의 머리 밑 면에 쎄레이션 형상을 추가하여 그 효과를 분석하였다. 쎄레이션 볼트는 풀림과정에서 피체결체 윗면을 변형시켜 풀림 방지 턱을 생성해 풀림을 방지하는 역할을 한다. 쎄레이션 개수와 체결 깊이를 변수로 하여 그 영향을 분석하고 풀림 방지 성능에 미치는 영향을 확인하였다.

학습제어를 이용한 지게차 자동변속기 상향 변속품질 개선 (An Upshift Improvement in the Quality of Forklift's Automatic Transmission by Learning Control)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권2호
    • /
    • pp.17-26
    • /
    • 2022
  • Recently, automatic transmissions caused a good improvement in the shift quality of a forklift. An advanced shift control algorithm, which was based on TCU firmware, was applied with embedded control technology and microcontrollers. In the clutch-to-clutch shifting, one friction element is released and the other friction element is activated. During this process, if the release and application timings are not synchronized, an overrun or tie-up occurs and ultimately leads to a shift shock. The TCU, which measures only the speed of the forklift, inevitably applies the open-loop shift control. In this situation, the speed ratio does not change during the clutch fill. The torque phase occurs until the clutch is disengaged. In this study, an offline shift logic of the learning control was proposed. It induced a synchronous shift when the learning control progressed. During this process, the reference current trajectory of the release clutch was corrected and applied to the next upshift. We considered the results of the overrun/tie-up characteristics of the upshift performed immediately before. The vehicle test proved that the deviation in shift quality, which was caused by the difference in the mechanical characteristics of the clutch, could be improved by the learning control.

나사잭 메커니즘을 이용한 비폭발식 분리장치 (Non-explosive separation device using screw jack mechanism)

  • 박현준;이민수;조재욱;김병규
    • 한국항공우주학회지
    • /
    • 제38권4호
    • /
    • pp.321-326
    • /
    • 2010
  • 본 논문에서는 나사잭의 메커니즘을 이용한 인공위성의 비폭발식 분리장치를 설계 및 제작하였다. 분리장치의 구동기로는 정격토크가 $1.7kgf{\cdot}cm$의 성능을 가진 회전형 피에조 모터를 사용하여 분리장치의 안정적인 작동이 이뤄지도록 하였다. 또한 인공위성의 분리장치로의 성능을 검증하기 위하여 반응속도 실험, 준정적 하중실험, 충격실험을 수행하였다. 실험을 수행한 결과, 반응속도는 약 1.172초로 측정되었고, 45kgf의 하중에서도 안정적으로 견딜 수 있음을 확인하였다. 최대 충격 가속도는 18G가 측정이 되었는데 이것은 폭발식 분리장치에 비해 매우 작은 값이다. 우리는 이러한 실험을 통하여 제안한 분리장치의 신뢰성을 확인하였으며, 인공위성 분리장치로써의 가능성을 제시하였다.

가솔린 기관의 혼합기 조성과 연소 특성에 관한 연구 (A Study on Mixture Composition and Combustion Characteristics in Gasoline Engine)

  • 김기복;윤창식
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.197-206
    • /
    • 2015
  • Recently the automobile engine has been developed in achieving the high performance, fuel economy, and emission reduction. In a conventional spark ignition engine the fuel and air are mixed together in the intake system, inducted through the intake valve into the cylinder, and then compressed. Under normal operating conditions, the combustion is initiated towards the end of the compression stroke at the spark plug by an electric discharge. Following inflammation, a flame develops and propagates through this premixed fuel-air mixture. Therefore the state of mixture is very important in the combustion and emission characteristics. In this study the combustion and emission characteristics were tested and analyzed with changing the mixture composition and engine operating parameters in order to improve the combustion and performance in engine.

바이오에탄올 SI 엔진에서 에탄올-가솔린 연료 혼합비율에 따른 희박연소 및 배기 특성 (Effect of Ethanol-gasoline Blending Ratio on Lean Combustion and Exhaust Emissions Characteristics in a SI Engine Fueled with Bioethanol)

  • 윤승현;김대성;이창식
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.82-88
    • /
    • 2011
  • Lean combustion and exhaust emission characteristics in a ethanol fueled spark-ignited engine according to ethanol-gasoline fuel blending ratio were investigated. The test engine was $1591cm^3$ and 10.5 of compression ratio SI engine with 4 cylinders. In addition, lambda sensor system was connected with universal ECU to control the lambda value which is varied from 1.0 to 1.5. The engine performance and lean combustion characteristics such as brake torque, cylinder pressure and rate of heat release were investigated according to ethanol-gasoline fuel blending ratio. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), nitrogen oxides ($NO_x$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque, cylinder pressure and the stability of engine operation were increased as ethanol blending ratio is increased. Brake specific fuel consumption (BSFC) was increased in higher ethanol blending ratio while brake specific energy consumption (BSEC) was decreased in higher ethanol blending ratio. The exhaust emissions were decreased as ethanol blending ratio is increased under overall experimental conditions, however, some specific exhaust emission characteristics were mainly influenced by lambda value and ethanol-gasoline fuel blending ratio.

볼링 투구동작의 운동역학적 연구 (Biomechanical Analysis of a Bowling Swing)

  • 이해명;이성철;이해동
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.53-63
    • /
    • 2006
  • The general objective of this study was to investigate biomechanical characteristics of bowling swing using three-dimensional cinematography. This study focused specifically on movements of the upper body segments during a bowling swing. Eight elite female bowling players participated in this study. Subjects performed bowling swing and their performance was sampled at 60 frame/sec using two high-speed video cameras with a synchronizer. After digitizing images from two cameras, the two-dimensional coordinates were used to produce three-dimensional coordinates of the 12 body segments (20 joint reference makers). The obtained three-dimensional coordinates were fed to a custom-written kinematic and kinetic analyses program (LabView 6.1, National Instrument, Austin, TX, USA). The analyses determined the linear and angular kinematic variables of the body segments with which joint force and torque of the lower and upper trunks and the shoulder were estimated based on the Newton-Euler equations. It was found that during the bowling swing the peak linear velocities of the body segments were reached in sequence the trunk, the shoulder, the elbow, the wrist, and the bowl. This result indicates that linear momentum of the lower body and the trunk transmits to the arm segment during the bowling swing. The joint torques of the torso and the arm occurred almost simultaneously, indicating that bowling swing seem to be a push-like motion, rather than a proximal-distal sequence motion in which many of throwing motions are categorized. The ultimate objective of the bowling swing is to release a heavy-weight bowl with power and consistency. Therefore, the bowling swing observed in this study well agrees with that bowlers use the stepping to increase the linear velocity of the bowl, the simple pendulum system and the push-like segmental motion in the torso and the arm segment to enhance the power at the release of the bowl.

SI 가솔린 엔진의 과급 및 흡기가 엔진 성능에 미치는 영향에 대한 연구 (A Study About the Effect of Supercharging and Intake Charge on Engine Performance in Spark Ignition Gasoline Engine)

  • 김기복;진석준;김치원;윤창식;한성현
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, it is designed and used the test engine bed which is installed with turbocharger, and in addition to equipped using by oxygen adder. It has been controlled the oxygen volumetric fraction of intake air chrge, and supercharged flow rate into the cylinder of SI 4-stroke engine, and then, has been analyzed engine performance, combustion characteristics, and exhaust emission as analysis parameters. The tested parameters were the oxygen fraction and the variation of engine speed and air-fuel ratio.

커먼레일식 디젤기관의 부분 예혼합 분사시기가 연소 및 배기특성에 미치는 영향 (The Effects of Partially Premixed Pilot Injection Timing on the Combustion and Emission Characteristics in a Common Rail Diesel Engine)

  • 윤삼기;최낙정
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.18-24
    • /
    • 2013
  • An experimental study was performed to investigate the characteristics of combustion pressure and exhaust emissions when the pilot injection timing and EGR rate were changed in a CRDI 4-cylinder diesel engine. The pilot injection timing and EGR rate have a significant impact on the combustion and emission characteristics of diesel engine. In this study, the pilot injection timing and EGR rate variation were conducted to 2000rpm of engine speed with torque 50Nm. Combustion pressure and heat release rate were decreased under high EGR rate conditions but increased under the pilot injection timing $20^{\circ}$(BTDC). IMEP and the maximum pressure in cylinder(Pmax) were decreased under the same injection timing with the increase of EGR rate. The NOx emission was decreased with increasing the EGR rate. On the other hand, in the same injection timing conditions, CO, HC, $CO_2$ emissions were increased with increasing the EGR rate.

Modeling the clutch energy and clutch life of a heavy duty vehicle

  • Akkurt, Ismail;Anlas, Gunay;Bedir, Hasan
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.21-39
    • /
    • 2018
  • Clutch energy is the thermal energy dissipated on the clutch disc, and it reaches its highest level during drive-off as a result of the difference between the angular speeds of the flywheel and clutch disc, and the torque transmitted. The thermal energy dissipated effects the clutch life. This study presents a new drive-off and thermal model to calculate the clutch energy for a rear wheel driven heavy-duty vehicle and to analyze the effects of clutch energy on temperatures of clutch pressure plate, flywheel and clutch housing. Three different driver profiles are used, based on the release of the clutch pedal in modulation zone: i) the pedal travels with the same speed all the way, ii) the travel speed of the pedal increases, iii) the travel speed of the pedal decreases. Vehicle test is performed to check the accuracy of the model. When compared to a simpler model that is widely used in the literature to calculate the clutch energy, the model used in this study calculates the clutch energy and angular speed behaviors of flywheel and transmission input shaft in better agreement with experimental results. Clutch wear and total clutch life are also estimated using the mean specific friction power.