• Title/Summary/Keyword: Relay Using Scheme

Search Result 214, Processing Time 0.025 seconds

Design and Implementation of an Automatic Switching Technology Between Ad-Hoc and Infrastructure Modes in Wireless LANs (무선 LAN에서 Ad-Hoc과 Infrastructure 모드의 자동전환 기술 설계 및 구현)

  • Shin Taek-Su;Jo Sung-Min;Min Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.892-899
    • /
    • 2006
  • In this paper, we propose an automatic switching technology between the ad-hoc and the infrastructure modes without user intervention in the IEEE 802.11b wireless LAN. Also, we design our proposed technology and implemented on the Linux machine. For this operation, the area within an Access Point (AP) coverage is defined as a switching area, and a node without any transmission in this area is assumed to be able to relay frames between the AP and nodes in the shaded area that is outside the coverage and cannot reach the AP. By using the proposed technology, it is possible to provide the seamless Internet access service to nodes at the ad-hoc mode in the shaded area. In this paper, we explains the operation of the detection method of the switching area, presents the flowchart and implementation environment. To prove the operation of our technology, we obtain the results of captured packets transmitted between nodes and throughput results through ftp transmission experiment. Hence, we can see that our proposed scheme can be improve the wireless access service in wireless and mobile networks.

MPICH-GP : An MPI Extension to Supporting Private IP Clusters in Grid Environments (MPICH-GP : 그리드 상에서 사설 IP 클러스터 지원을 위한 MPI 확장)

  • Park, Kum-Rye;Yun, Hyun-Jun;Park, Sung-Yong;Kwon, Oh-Young;Kwon, Oh-Kyoung
    • The KIPS Transactions:PartA
    • /
    • v.14A no.1 s.105
    • /
    • pp.1-14
    • /
    • 2007
  • MPICH-G2 is an MPI implementation to solve complex computational problems by utilizing geographically dispersed computing resources in grid environments. However, the computation nodes in MPICH-G2 are exposed to the external network due to the lack of supporting the private IP clusters, which raises the possibility of malicious security attacks. In order to address this problem, we propose MPICH-GP with a new relay scheme combining NAT(Network Address Translation) service and an user-level proxy. The proxy running on the front-end system of private IP clusters forwards the incoming connection requests to the systems inside the clusters. The outgoing connection requests out of the cluster are forwarded through the NAT service on the front-end system. Through the connection path between the pair of processes, the requested MPI jobs can be successfully executed in grid environments with various clusters including private IP clusters. By simulations, we show that the performance of MPICH-GP reaches over 80% of the performance of MPICH-G2, and over 95% in ease of using RANK management method.

Overlay Multicast Network for IPTV Service using Bandwidth Adaptive Distributed Streaming Scheme (대역폭 적응형 분산 스트리밍 기법을 이용한 IPTV 서비스용 오버레이 멀티캐스트 네트워크)

  • Park, Eun-Yong;Liu, Jing;Han, Sun-Young;Kim, Chin-Chol;Kang, Sang-Ug
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1141-1153
    • /
    • 2010
  • This paper introduces ONLIS(Overlay Multicast Network for Live IPTV Service), a novel overlay multicast network optimized to deliver live broadcast IPTV stream. We analyzed IPTV reference model of ITU-T IPTV standardization group in terms of network and stream delivery from the source networks to the customer networks. Based on the analysis, we divide IPTV reference model into 3 networks; source network, core network and access network, ION(Infrastructure-based Overlay Multicast Network) is employed for the source and core networks and PON(P2P-based Overlay Multicast Network) is applied to the access networks. ION provides an efficient, reliable and stable stream distribution with very negligible delay while PON provides bandwidth efficient and cost effective streaming with a little tolerable delay. The most important challenge in live P2P streaming is to reduce end-to-end delay without sacrificing stream quality. Actually, there is always a trade-off between delay & stream quality in conventional live P2P streaming system. To solve this problem, we propose two approaches. Firstly, we propose DSPT(Distributed Streaming P2P Tree) which takes advantage of combinational overlay multicasting. In DSPT, a peer doesn't fully rely on SP(Supplying Peer) to get the live stream, but it cooperates with its local ANR(Access Network Relay) to reduce delay and improve stream quality. When RP detects bandwidth drop in SP, it immediately switches the connection from SP to ANR and continues to receive stream without any packet loss. DSPT uses distributed P2P streaming technique to let the peer share the stream to the extent of its available bandwidth. This means, if RP can't receive the whole stream from SP due to lack of SP's uploading bandwidth, then it receives only partial stream from SP and the rest from the ANR. The proposed distributed P2P streaming improves P2P networking efficiency.

An Enhanced Greedy Message Forwarding Protocol for High Mobile Inter-vehicular Communications (고속으로 이동하는 차량간 통신에서 향상된 탐욕 메시지 포워딩 프로토콜)

  • Jang, Hyun-Hee;Yu, Suk-Dae;Park, Jae-Bok;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.48-58
    • /
    • 2009
  • Geo-graphical routing protocols as GPSR are known to be very suitable and useful for vehicular ad-hoc networks. However, a corresponding node can include some stale neighbor nodes being out of a transmission range, and the stale nodes are pone to get a high priority to be a next relay node in the greedy mode. In addition, some useful redundant information can be eliminated during planarization in the recovery mode. This paper deals with a new recovery mode, the Greedy Border Superiority Routing(GBSR), along with an Adaptive Neighbor list Management(ANM) scheme. Each node can easily treat stale nodes on its neighbor list by means of comparing previous and current Position of a neighbor. When a node meets the local maximum, it makes use of a border superior graph to recover from it. This approach improve the packet delivery ratio while it decreases the time to recover from the local maximum. We evaluate the performance of the proposed methods using a network simulator. The results shown that the proposed protocol reveals much better performance than GPSR protocol. Please Put the of paper here.