• Title/Summary/Keyword: Relay Station(RS)

Search Result 52, Processing Time 0.02 seconds

Effect of Relay Capability on VoIP Performance in OFDMA based Relay Systems (OFDMA 기반 Relay 시스템에서 Relay의 Capability에 따른 VoIP 성능 분석)

  • Ahn, Sung-Bo;Choi, Ho-Young;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.304-310
    • /
    • 2009
  • In this paper, we evaluate the performance of VoIP in OFDMA-based relay systems with various capabilities of relays. We classify relays according to capability as "mid-capability (MC)" and "high-capability (HC)" relay. In system with HC relays, not only base station (BS) but also relay station (RS) performs scheduling at its ova whereas only BS performs scheduling in system with MC relays using the information reported by MS (i.e. the received signal-to-interference-plus-noise ratio (SINR) of mobile station (HS), the amount of MS traffic, etc). In system with MC relays, the controling overhead of BS is larger than that of system with HC relays. However, since BS has all MS information, efficient resource allocation and scheduling is possible. We derived the "average packet delay," "good packet ratio," and "cell goodput" in a VoIP environment. The simulation results demonstrate that the system with MC relays has better VoIP performance over that with HC relays.

Performance Analysis of Adaptive RS Coverage Extension Scheme for the MMR systems (MMR 시스템을 위한 적응적인 RS 커버리지 확장 기법의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.584-591
    • /
    • 2010
  • In this paper, we propose an adaptive Relay Station (RS) coverage extension scheme for the Mobile Multi-hop Relay (MMR) systems. The MMR system with a non-transparent mode RS can be used to extend BS coverage using the remaining capacity of the Base Station(BS). Thus, the call blocking may occur in RSs when calls arrive very often in Multi-hop Relay Base Station (MR-BS). In the proposed scheme, RSs can be connected to the neighbor MMR system as the 2ndtier RSs if the neighbor MMR system services low traffic load when calls are frequently arrived in MR-BS or RSs. By doing so, the MMR system can accept a new call without call blocking. Through numerical results, we demonstrate that the proposed scheme outperforms the conventional MMR system in terms of the throughput and call blocking probability of MMR systems.

Transmission Capacity Analysis for Cellular Systems Using Antenna Arrays and Wireline Relay Stations (안테나 어레이와 유선 Relay Station을 활용한 셀룰러 시스템의 전송 용량 분석)

  • Kim, Yu-Sin;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.689-695
    • /
    • 2007
  • Wireline relay stations(RS's) are connected to cellular base stations(BS's) via radio-over-fiber(RoF) to enhance system capacity and to reduce shadow areas. Unlike wireless multi-hop systems, BS-to-RS signaling is transmitted out-of-band, thus reducing the effect of interference caused by frequency reuse. In this paper, antenna arrays used in addition to the wireline RS's are considered to evaluate the transmission capacity gain and performance variations according to the may structures. In particular, RS locations to maximize the gain, may distribution patterns for a given number of antenna elements, performance enhancement for a varying number of elements are experimentally determined to suggest a proper utilization of antenna ways in conjunction with wireline RS's.

Performance Analysis of Mobile Multi-hop Relay Uplink System in Multicell Environments (멀티셀 환경에서 Mobile Multi-hop Relay 상향링크 시스템의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.394-400
    • /
    • 2010
  • Mobile Multi-hop Relaying (MMR) system can provide increased system capacity of wireless access network by coverage extension and enhanced transmission rate within the Base Station (BS) coverage area. The previous researches for the MMR system with a non-transparent mode Relay Station (RS) do not consider channel selection procedure of Mobile Station (MS), co-channel interference and Multi-hop Relay Base Station (MR-BS) coverage and RS coverage ratio in MMR system. In this paper, we investigate the performance of MMR uplink system in multicell environments with various topologies. The performance is presented in terms of call blocking probability, channel utilization, outage probability and system throughput by varying offered load. It is found that, for certain system parameters, the MMR uplink system achieve the maximum system throughput when MR-BS coverage to RS coverage ratio is 7.

Frequency Reuse and Sub-cell Coverage Determination Scheme for Improved Throughput in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 개선을 위한 자원 재사용과 커버리지 설정기법)

  • Hyun, Myung-Reun;Choi, Ho-Young;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.414-420
    • /
    • 2009
  • In this paper, we investigate throughput performance of OFDMA-based relay systems according to the "sub-cell coverage configuration" of the base station (RS) and the relay station (RS). RS is exploited for improved quality of the received signal with a tradeoff of additional radio resource consumption which may result in degradation of the throughput performance of the system. Therefore, "radio resource reuse" may be necessary for high performance in relay systems. However, it also causes system performance degradation since resource reuse between RSs incurs channel interference. Therefore, effective resource reuse also should be considered for "high throughput coverage configuration" when relays are employed. We relate the resource reuse patterns of neighboring RSs to sub-cell coverage configuration. We determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the mobile station (MS) from the BS and RS, respectively. Simulations illustrate the throughput performance as the function of SINR ratio, and it has different optimal point depending on the resource reuse patterns. Therefore, the "resource reuse pattern" and the "effective sub-cell coverage configuration" should be considered together for the high throughput performance of the relay system.

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

Performance of MIMO-OFDM Systems using The Relay With Multi-Antennas for Cooperative Diversity (Put English Title Here) (다중 안테나의 relay를 가진 MIMO-OFDM시스템의 Cooperative diversity에 따른 성능)

  • Kim, Chan-Kyu;Kim, Young-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.6
    • /
    • pp.13-19
    • /
    • 2008
  • In this paper, the new cooperative communication techniques is proposed for multi-input multi-output(MIMO)-orthogonal frequency division multiplexing (OFDM) system using the relay with multiple antenna. As the MIMO channel is formed by space time coding at the MS(mobile station)-RS(relay station) and RS-BS(base station), we can get the cooperative diversity and MIMO diversity gain simultaneously. Therefore, the performance of MIMO-OFDM system using the relay with multiple-antennas is very improved. And the simple power allocation technique is Proposed for the transmitting power of the mobile station and the relay.

A Study on Receiving Performance Improvement of LTE Using Hybrid OFDMA/SC-FDMA (Hybrid OFDMA/SC-FDMA를 이용한 LTE 수신성능 개선에 관한 연구)

  • Park, Chan-Hong;Jang, Sung-Won;Park, Sang-Joo;Han, Young-Hwan;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.158-161
    • /
    • 2010
  • In the paper, the researcher has proposed to install a relay between Base Station (BS) and Mobile Station (MS) to improve receiving performance of the downlink transmission method of Long Term Evolution (LTE) system whose standards now being established by 3GPP. By setting the distance between the location of BS and the relay installed as by 500m, 1000m, and selecting OFDMA and SC-FDMA as transmission method, the researcher conducted a study to improve the receiving performance of LTE. The results from study revealed that when the location of Relay Station (RS) was closer to BS, it was better to use OFDMA at BS, and SC-FDMA at RS. On the contrary, when the distance between BS and RS was farther, it was better to use SC-FDMA at BS, and OFDMA at RS. In addition, around the center zone between the location of BS and of MS, the researcher was able to improve the receiving performance of the system by utilizing the transmission method suitable for the situation in that area.

  • PDF

An Adaptive Coverage Control Algorithm for Throughput Improvement in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 성능 향상을 위한 적응적 커버리지 조절 기법)

  • Hyun, Myung-Reun;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.876-882
    • /
    • 2009
  • In this paper, we propose a sub-cell coverage control algorithm for enhancement of the cell throughput in OFDMA based relay systems. Relay station (RS) is exploited for improved quality of the received signal in cellular communication systems, especially in shadow areas. However, since a RS requires additional radio resource consumption for the link between the base station (BS) and the RS, we have to carefully control the coverage areas if a mobile station (MS) is serviced via the BS or the RS considering the cell throughput. We consider radio resource reuse as well for the sub-cell coverage configuration by applying various reuse patterns between RSs. We also consider a time varying system by adaptively changing the threshold for coverage depending on the MSs' traffic in the cell. We initially determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the MS from the BS and RSs, respectively. Then, the "sub-cell coverage threshold" varies based on the "effective transmitted bits per sub-channel" with time. Simulation result shows that the proposed "time varying coverage control algorithm" leads to throughput improvement compared to the fixed sub-cell coverage configuration.

Downlink Power Allocation for Relay Frequency Reuse (릴레이 주파수재사용을 위한 하향링크 전력 자원 할당)

  • Oh, Chang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.98-104
    • /
    • 2012
  • We consider the optimum power allocation problem for downlink system throughput maximization in a 2 time slotted relay interference channel. Base station (BS) transmits power to Mobile Station (MS) and Relay Station (RS) in time slot 1 (orthogonal channel). In time slot 2, BS and RS transmit power to each MS, while causing cochannel interference to each other. The obtained optimum power allocation scheme allows simultaneous transmissions of BS and RS when the interference level in time slot 2 is low. However, when the interference level is high, RS shuts down its power. Numerical results are provided to support our analysis.