• Title/Summary/Keyword: Relay Networks

Search Result 527, Processing Time 0.02 seconds

A Study of Relay Efficiency in WCDMA Core Networks Using BICC Signaling Protocol (BICC 적용을 통한 WCDMA 교환망 중계 효율성 제고방안 연구)

  • Cho, Jeong-Je;Kim, Nak-Po
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.147-148
    • /
    • 2007
  • BICC protocol is a relay protocol adaptable to ATM and IP based core networks compared to ISUP protocol to TDM networks. Using BICC protocol, multi-rate bearer traffic such as voice and video can flow in the relay core networks. BICC protocol is standardized as WCDMA circuit switching networks in 3GPP Release 4. Thus KTF is now operating core networks using BICC protocol. In this paper, we describe the background and characteristics of BICC protocol. We also provide the status of KTF WCDMA core networks using BICC. To show the efficiency of BICC protocol an analytical simulation is given in which the results can be expected by intuitive observation.

  • PDF

Optimal Power Control in Cooperative Relay Networks Based on a Differential Game

  • Xu, Haitao;Zhou, Xianwei
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.280-285
    • /
    • 2014
  • In this paper, the optimal power control problem in a cooperative relay network is investigated and a new power control scheme is proposed based on a non-cooperative differential game. Optimal power allocated to each node for a relay is formulated using the Nash equilibrium in this paper, considering both the throughput and energy efficiency together. It is proved that the non-cooperative differential game algorithm is applicable and the optimal power level can be achieved.

Optimized Relay Node Deployment and Resource Allocation in LTE-Advanced Relay Networks

  • Fenghe, Huang;Joe, In-Whee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.146-148
    • /
    • 2014
  • In LTE-Advanced (LTE-A) networks, Relay nodes (RN) are used to improve the system coverage. However, it also brings new kind of interference to users which reduces the system performance. In this paper, we use an optimization relay node deployment to reduce the interference as much as possible and resource allocation to improve the user throughput. Our simulation results show our method is able to improve the user SINR and throughput.

Performance Analysis of Amplify-and-Forward Relaying in Cooperative Networks with Partial Relay Selection (부분 중계노드 선택 기반의 협력 네트워크에서 증폭 후 전송 방식에 대한 성능분석)

  • Hwang, Ho-seon;Ahn, Kyung-seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2317-2323
    • /
    • 2015
  • In this paper, we analyze the performance of dual-hop amplify-and-forward (AF) relaying in cooperative networks with partial relay selection. An AF relay gain considered in this paper includes channel-noise-assisted relay gain. Leveraging a received signal-to-noise ratio (SNR) model, we derive exact closed-form expressions for the probability density function (pdf) and cumulative distribution function (cdf) of the end-to-end SNR. Moreover, an exact closed-form expression of the ergodic capacity for dual-hop AF relaying with channel-noise-assisted relay gain and partial relay selection is investigated. The analytical results shown in this paper are confirmed by Monte-Carlo simulations.

A Comparison of TDMA, Dirty Paper Coding, and Beamforming for Multiuser MIMO Relay Networks

  • Li, Jianing;Zhang, Jianhua;Zhang, Yu;Zhang, Ping
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • A two-hop multiple-input multiple-output (MIMO) relay network which comprises a multiple antenna source, an amplify-and-forward MIMO relay and many potential users are studied in this paper. Consider the achievable sum rate as the performance metric, a joint design method for the processing units of the BS and relay node is proposed. The optimal structures are given, which decompose the multiuser MIMO relay channel into several parallel single-input single-output relay channels. With these structures, the signal-to-noise ratio at the destination users is derived; and the power allocation is proved to be a convex problem. We also show that high sum rate can be achieved by pairing each link according to its magnitude. The sum rate of three broadcast strategies, time division multiple access (TDMA) to the strongest user, dirty paper coding (DPC), and beamforming (BF) are investigated. The sum rate bounds of these strategies and the sum capacity (achieved by DPC) gain over TDMA and BF are given. With these results, it can be easily obtained that how far away TDMA and BF are from being optimal in terms of the achievable sum rate.

Exact and Approximate Symbol Error Probability of cooperative systems with best relay selection and all participating relaying using Amplify and Forward or Decode and Forward Relaying over Nakagami-m fading channels

  • Halima, Nadhir Ben;Boujemaa, Hatem
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.81-108
    • /
    • 2018
  • In this paper, we derive the theoretical Symbol Error Probability (SEP) of cooperative systems with best relay selection for Nakagami-m fading channels. For Amplify and Forward (AF) relaying, the selected relay offers the best instantaneous Signal to Noise Ratio (SNR) of the relaying link (source-relay-destination). In cooperative networks using Decode and Forward (DF), the selected relay offers the best instantaneous SNR of the link between the relay and the destination among the relays that have correctly decoded the transmitted information by the source. In the second part of the paper, we derive the SEP when all participating AF and DF relaying is performed. In the last part of the paper, we extend our results to cognitive radio networks where there is interference constraints : only relays that generate interference to primary receiver lower than a predefined threshold T can transmit. Both AF and DF relaying with and without relay selection are considered.

Energy Efficient Adaptive Relay Station ON/OFF Scheme for Cellular Relay Networks

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.9-15
    • /
    • 2018
  • This paper proposes an energy efficient adaptive relay station ON/OFF scheme with different frequency reuse factors (FRFs) to enhance the system throughput and reduce the transmission energy consumption for the transparent mode of 2-hop cellular relay networks (CRNs) based on orthogonal frequency division multiple access and time division duplex. In the proposed scheme, the base station turns on or off the relay stations (RSs) when they are overutilized and undertuilized based on the traffic density of the cell coverage, respectively. Through the simulation results, we show that the proposed scheme outperforms the conventional CRN in terms of the energy consumption with the same system throughput. Further, in order to increase the system throughput with low energy consumption, the best way is FRF 1 when the number of operating RSs is up to 4 and FRF 2 otherwise.

Throughput-efficient Online Relay Selection for Dual-hop Cooperative Networks

  • Lin, Yuan;Li, Bowen;Yin, Hao;He, Yuanzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2095-2110
    • /
    • 2015
  • This paper presents a design for a throughput-efficient online relay selection scheme for dual-hop multi-relay cooperative networks. Problems arise with these networks due to unpredictability of the relaying link quality and high time-consumption to probe the dual-hop link. In this paper, we firstly propose a novel probing and relaying protocol, which greatly reduces the overhead of the dual-hop link estimation by leveraging the wireless broadcasting nature of the network. We then formulate an opportunistic relay selection process for the online decision-making, which uses a tradeoff between obtaining more link information to establish better cooperative relaying and minimizing the time cost for dual-hop link estimation to achieve higher throughput. Dynamic programming is used to construct the throughput-optimal control policy for a typically heterogeneous Rayleigh fading environment, and determines which relay to probe and when to transmit the data. Additionally, we extend the main results to mixed Rayleigh/Rician link scenarios, i.e., where one side of the relaying link experiences Rayleigh fading while the other has Rician distribution. Numerical results validate the effectiveness and superiority of our proposed relaying scheme, e.g., it achieves at least 107% throughput gain compared with the state of the art solution.

MSAP NAT Relay Cell for Combat Networks (전투 네트워크를 위한 MSAP NAT Relay Cell)

  • Choi, Ki-Woon;Choi, Young-June
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.196-205
    • /
    • 2012
  • In this paper, we investigate MSAP-TMFT in TICN systems that will be future NCW-based tactical networks. Although MSAP-TMFT implements the WiBro technology, we propose to design a NRC(NAT Relay Cell) that functions as a relay station and at the same time as a base station in combat environments. NRCs support extension of communication distance, increased data rate, efficient radio resource management, and survavibility of combat networks. From simulation results, we show that NRCs improve the efficacy of radio resource management and system throughput compared to the legacy systems.

Achievable Rate of Beamforming Dual-hop Multi-antenna Relay Network in the Presence of a Jammer

  • Feng, Guiguo;Guo, Wangmei;Gao, Jingliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3789-3808
    • /
    • 2017
  • This paper studies a multi-antenna wireless relay network in the presence of a jammer. In this network, the source node transmits signals to the destination node through a multi-antenna relay node which adopts the amplify-and-forward scheme, and the jammer attempts to inject additive signals on all antennas of the relay node. With the linear beamforming scheme at the relay node, this network can be modeled as an equivalent Gaussian arbitrarily varying channel (GAVC). Based on this observation, we deduce the mathematical closed-forms of the capacities for two special cases and the suboptimal achievable rate for the general case, respectively. To reduce complexity, we further propose an optimal structure of the beamforming matrix. In addition, we present a second order cone programming (SOCP)-based algorithm to efficiently compute the optimal beamforming matrix so as to maximize the transmission rate between the source and the destination when the perfect channel state information (CSI) is available. Our numerical simulations show significant improvements of our propose scheme over other baseline ones.