• 제목/요약/키워드: Relative rotation

검색결과 240건 처리시간 0.022초

Rotation Invariant Histogram of Oriented Gradients

  • Cheon, Min-Kyu;Lee, Won-Ju;Hyun, Chang-Ho;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.293-298
    • /
    • 2011
  • In this paper, we propose a new image descriptor, that is, a rotation invariant histogram of oriented gradients (RIHOG). RIHOG overcomes a disadvantage of the histogram of oriented gradients (HOG), which is very sensitive to image rotation. The HOG only uses magnitude values of a pixel without considering neighboring pixels. The RIHOG uses the accumulated relative magnitude values of corresponding relative orientation calculated with neighboring pixels, which has an effect on reducing the sensitivity to image rotation. The performance of RIHOG is verified via the index of classification and classification of Brodatz texture data.

고속열차 동력차의 센터피봇 상대 회전각 계측에 관한 연구 (A Study on the Measurement of Relative Rotation of Center Pivot in Power Car of KTX)

  • 서승일;정우진
    • 한국철도학회논문집
    • /
    • 제9권3호
    • /
    • pp.277-281
    • /
    • 2006
  • The center pivot in the power car of KTX carries the traction force of the motor bogie to the carbody. The damage to the center pivot due to failure of swivel joint causes a serious hazard of the train. To prevent the hazard, information on the relative motion between bogie and carbody is necessary. In this paper, a method to measure the relative rotation of the center pivot is proposed and an actual test to verify the method and safety is conducted. The test results show that the rotation of the center pivot is within the allowable limit and the damage due to the relative motion doesn't take place.

실내모형 실험을 통한 수평재하말뚝의 회전점 산정 (Estimation of Rotation Point of Laterally Loaded Piles through Laboratory Test)

  • 황성욱;홍정무;이준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.744-747
    • /
    • 2008
  • In this study, to analyze the rotation point of piles, the laboratory lateral load test was performed. The lateral load bearing capacity is one of the important factor related with structure failure directly. Analyzing rotation point in different soil condition, relative density and stress condition, leads more accurate ultimate lateral bearing capacity. Also, reliability was analyzed about established 예측식 as applying to tapered pile. As a result, the established prediction was suitable to cylider pile, but not to tapered pile.

  • PDF

Evaluating contradictory relationship between floor rotation and torsional irregularity coefficient under varying orientations of ground motion

  • Zhang, Chunwei;Alam, Zeshan;Samali, Bijan
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.1027-1041
    • /
    • 2016
  • Different incident angles of ground motions have been considered to evaluate the relationship between floor rotation and torsional irregularity coefficient. The issues specifically addressed are (1) variability in torsional irregularity coefficient and floor rotations with varying incident angles of ground motion (2) contradictory relationship between floor rotation and torsional irregularity coefficient. To explore the stated issues, an evaluation based on relative variation in seismic response quantities of linear asymmetric structure under the influence of horizontal bi-directional excitation with varying seismic orientations has been carried out using response history analysis. Several typical earthquake records are applied to the structure to demonstrate the relative variations of floor rotation and torsional irregularity coefficient for different seismic orientations. It is demonstrated that (1) Torsional irregularity coefficient (TIC) increases as the story number decreases when the ground motion is considered along reference axes of the structure. For incident angles other than structure's reference axes, TIC either decreases as the story number decreases or there is no specific trend for TIC. Floor rotation increases in proportion to the story number when the ground motion is considered along reference axes of structure. For incident angles other than structure's reference axes, floor rotation either decreases as the story number increases or there is no specific trend for floor rotation and (2) TIC and floor rotation seems to be approximately inversely proportional to each other when the ground motion is considered along reference axes of the structure. For incident angles other than structure's reference axes, the relationship can even become directly proportional instead of inversely proportional.

Generalized One-Level Rotation Designs with Finite Rotation Groups Part II : Variance Formulas of Estimators

  • Kim, Kee-Whan;Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • 제29권1호
    • /
    • pp.45-62
    • /
    • 2000
  • Rotation design is a sampling technique to reduce response burden and to estimate the population characteristics varying in time. Park and Kim(1999) discussed a generation of one-level rotation design which is called as {{{{r_1^m ~-r_2^m-1}}}} design has more applicable form than existing before. In the structure of {{{{r_1^m ~-r_2^m-1}}}} design, we derive the exact variances of generalized composite estimators for level, change and aggregate level characteristics of interest, and optimal coefficients minimizing their variances. Finally numerical examples are shown by the efficiency of alternative designs relative to widely used 4-8-4 rotation design. This is continuous work of Part Ⅰ studied by Park and Kim(1999).

  • PDF

회전하는 터빈 블레이드에서의 열전달 특성 (Detailed Heat Transfer Characteristics on Rotating Turbine Blade)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

몸통 운동시 지향각(Orientation angles)을 이용한 허리 근육의 3차원 위치 좌표 추정 기법 (The method to estimate 3-D coordinates of lower trunk muscles using orientation angles during a motion)

  • 임영태
    • 한국운동역학회지
    • /
    • 제12권1호
    • /
    • pp.125-133
    • /
    • 2002
  • The purpose of this study was to develop a method for estimating 3-D coordinates of lower trunk muscles using orientation angles during a motion. Traditional 3-D motion analysis system with DLT technique was used to track down the locations of eight reference markers which were attached on the back of the subject. In order to estimate the orientations of individual lumbar vertebrae and musculoskeletal parameters of the lower trunk muscle, the rotation matrix of the middle trunk reference frame relative to the lower trunk reference frame was determined and the angular locations of individual lumbar vertebrae were estimated by partitioning the orientation angles (Cardan angles) that represent the relative angles between the rotations of the middle and lower trunks. When the orientation angles of individual intervertebral joints were known at a given instant, the instantaneous coordinates of the origin and insertion for all selected muscles relative to the L5 local reference frame were obtained by applying the transformation matrix to the original coordinates which were relative to a local reference frame (S1, L4, L3, L2, or L1) in a rotation sequence about the Z-, X- and Y-axes. The multiplication of transformation matrices was performed to estimate the geometry and kinematics of all selected muscles. The time histories of the 3-D coordinates of the origin and insertion of all selected muscles relative to the center of the L4-L5 motion segment were determined for each trial.

관절과 상완 관절의 회전운동이 견갑흉곽 운동에 미치는 영향 (The Influence of the Glenohumeral Rotation on the Scapulothoracic Motion)

  • 서중배;최의성;원중희;김용민;이호승;김응록
    • Clinics in Shoulder and Elbow
    • /
    • 제1권2호
    • /
    • pp.186-192
    • /
    • 1998
  • This study was performed to evaluate the influences of the passive glenohumeral rotation on the scapulothoracic motion. We took anteroposterior radiograms of the right shoulders including the thoracic vertebrae with supine position in 10 normal male adults, at 0 degree abduction, 45 degrees abduction and 90 degrees abduction in scapular plane and in neutral rotation, maximal internal rotation and maximal external rotation in each abduction view. The scapulothoracic motion was measured as the distances between the vertical line drawn from the spinous process of the 7th cervical vertebra and the inferior and superior angles of the right scapula respectively. At 0 degree abduction, the distances were not changed in internal rotation relative to neutral rotation, but decreased significantly in external rotation, that is, the scapula shifts medially on external rotation. At 45 degrees abduction, the distances were increased significantly only in internal rotation, that is, the scapula shifts laterally on internal rotation. At 90 degrees abduction, the scapula rotated laterally on internal rotation and medially on external rotation. In conclusion, when a physician examines the rotation of the shoulder joint, he cannot exclude the scapulothoracic motion just by examining the patient with supine position. And we concluded that the rotatory movement of the shoulder is not solely contributed to the glenohumeral motion.

  • PDF

상대거리-곡률 특징 공간을 이용한 형태 기술 및 인식 (Shape Description and Recognition Using the Relative Distance-Curvature Feature Space)

  • 김민기
    • 정보처리학회논문지B
    • /
    • 제12B권5호
    • /
    • pp.527-534
    • /
    • 2005
  • 영상에 회전이나 크기 변형이 가해지면 영상을 구성하는 점들의 좌표값들이 변경되어 형태 기술 및 인식이 어렵게 된다. 그러나 영상을 구성하는 점들 간의 위치관계나 무게중심과의 위치 관계는 변하지 않는다. 따라서 x-y 좌표계로 기술되는 영상 공간의 점들을 회전 및 크기 변형에 불변하는 새로운 좌표계로 사상할 수 있다면, 형태 기술 및 인식의 문제는 보다 수월해진다. 본 논문에서는 영상 공간의 점들을 회전 및 크기 변형에 무관한 새로운 특징 공간으로 사상하여 형태를 기술하는 방법을 제안한다. 특징 공간을 나타내는 새로운 좌표계는 무게중심으로부터의 상대거리와 윤곽선 세그먼트 곡률을 두 축으로 하는 직교 좌표계이다. 상대거리는 윤곽선 상의 임의의 한 점이 무게중심에서 얼마나 멀리 벗어나 있는지를 나타내는 값이고, 윤곽선 세그먼트 곡률은 세그먼트의 굴곡도를 나타내는 값이다. 특징 공간에 사상된 점들의 형태 기술은 메쉬 특징을 통해 이루어진다. 실험을 통해 제안된 형태 기술 방법이 회전 및 크기 변형에 강건함을 확인하였다.

A SMA-based morphing flap: conceptual and advanced design

  • Ameduri, Salvatore;Concilio, Antonio;Pecora, Rosario
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.555-577
    • /
    • 2015
  • In the work at hand, the development of a morphing flap, actuated through shape memory alloy load bearing elements, is described. Moving from aerodynamic specifications, prescribing the morphed shape enhancing the aerodynamic efficiency of the flap, a suitable actuation architecture was identified, able to affect the curvature. Each rib of the flap was split into three elastic elements, namely "cells", connected each others in serial way and providing the bending stiffness to the structure. The edges of each cell are linked to SMA elements, whose contraction induces rotation onto the cell itself with an increase of the local curvature of the flap airfoil. The cells are made of two metallic plates crossing each others to form a characteristic "X" configuration; a good flexibility and an acceptable stress concentration level was obtained non connecting the plates onto the crossing zone. After identifying the main design parameters of the structure (i.e. plates relative angle, thickness and depth, SMA length, cross section and connections to the cell) an optimization was performed, with the scope of enhancing the achievable rotation of the cell, its ability in absorbing the external aerodynamic loads and, at the same time, containing the stress level and the weight. The conceptual scheme of the architecture was then reinterpreted in view of a practical realization of the prototype. Implementation issues (SMA - cells connection and cells relative rotation to compensate the impressed inflection assuring the SMA pre-load) were considered. Through a detailed FE model the prototype morphing performance were investigated in presence of the most severe load conditions.