• Title/Summary/Keyword: Relative precision

Search Result 701, Processing Time 0.103 seconds

LSTM-based aerodynamic force modeling for unsteady flows around structures

  • Shijie Liu;Zhen Zhang;Xue Zhou;Qingkuan Liu
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.147-160
    • /
    • 2024
  • The aerodynamic force is a significant component that influences the stability and safety of structures. It has unstable properties and depends on computer precision, making its long-term prediction challenging. Accurately estimating the aerodynamic traits of structures is critical for structural design and vibration control. This paper establishes an unsteady aerodynamic time series prediction model using Long Short-Term Memory (LSTM) network. The unsteady aerodynamic force under varied Reynolds number and angles of attack is predicted by the LSTM model. The input of the model is the aerodynamic coefficients of the 1 to n sample points and output is the aerodynamic coefficients of the n+1 sample point. The model is predicted by interpolation and extrapolation utilizing Unsteady Reynolds-average Navier-Stokes (URANS) simulation data of flow around a circular cylinder, square cylinder and airfoil. The results illustrate that the trajectories of the LSTM prediction results and URANS outcomes are largely consistent with time. The mean relative error between the forecast results and the original results is less than 6%. Therefore, our technique has a prospective application in unsteady aerodynamic force prediction of structures and can give technical assistance for engineering applications.

Quantitative analysis of hyperoside and isoquercitrin in methanolic extract of Stewartia koreana leaves using HPLC-DAD

  • Ju-Yeong Kang;Yu Hwa Kim;Youngdae Yoon;Bong-Gyu Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.436-446
    • /
    • 2023
  • Since Stewartia koreana leaves are registered with the Food and Drug Administration as edible herbal materials, they are used in the development of functional foods, cosmetics, and medicines. In this study, we established an analysis method that can simultaneously analyze two indicators, hyperoside (quercetin 3-O-galactoside) and isoquercitrin (quercetin 3-O-glucoside) contained in the leaves of S. koreana using HPLC-DAD. In accordance with the Ministry of Food and Drug Safety's health functional food guidelines, the analysis method was verified for specificity, accuracy, precision, limit of quantification, and linearity. The analysis method established in this study showed more than 0.9989 of the correlation coefficient values (r2) for the calibration. The total recovery rates of isoquercitrin and hyperoside were 100.55 and 98.87% with 0.14-0.78 and 0.47-0.67% of the relative standard deviation, respectively. Therefore, it was suggested that the new analytical method would be applied to standardize raw materials and high value-added products originated from the leaves of the S. koreana in the future.

2010 Inter-laboratory Comparison Study on Nutrient Analysis in Seawater (2010년 국내 해수 중 영양염 분석 실험실간 상호비교실험 연구)

  • Moon, Cho-Rong;Rho, Taekeun;Kang, Dong-Jin;Kahng, Sung-Hyun;Cho, Sung Rok;Kim, Eun-Soo;Lee, Jung Moo;Park, Eun Ju;Shin, Jin-Sun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • An inter-laboratory comparison campaign on nutrient analysis in seawater was carried out in 2010. Sets of three sterilized seawater samples (Bottle 130, 131, 132) which have enough homogeneity and stability were distributed to 10 laboratories. Participants analyzed the nutrients in their own laboratories (nitrite, nitrate, phosphate, and silicate) at least 5 times and reported the results. Statistical treatments were applied to the results to assess the precision for each laboratory and the discrepancy among laboratories. Most laboratories show within 10% of precision in all nutrient results. Degrees of scattering described as discrepancy among laboratories and relative percent difference values were 4~63% and 0.04~2217%, respectively. The statistical analysis shows that the difference among the laboratories may due to the systematic error rather than random error. When the results were corrected by the results of bottle 130 as a reference material, the degrees of scattering and the relative percent difference were improved significantly. As a result, since most participants show satisfactory precision for nutrient analyses, a use of reference materials which have homogeneity and stability was strongly recommended to improve the comparability of nutrient data.

Source Apportionment and Chemical Characteristics of Atmospheric PM2.5 in an Agricultural Area of Korea (농촌지역 대기 중 PM2.5의 화학적 특성과 오염원 정량 평가)

  • Jeong, Jin-Hee;Lim, Jong-Myoung;Lee, Jin-Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.431-446
    • /
    • 2018
  • In this study, chemical characteristics of $PM_{2.5}$ samples collected in an agricultural area in Nonsan of Korea were investigated focusing on of black carbon, 3 inorganic ions and 22 trace elements. It was found that the relative error and relative standard deviation of many trace elements fell below 10%, which indicates good analytical accuracy and precision. The mean values of $PM_{2.5}$ in an agricultural area were exceeded by new Korean air quality standard of March 2018. The concentration of $PM_{2.5}$ was well correlated with those of black carbon and ions. The concentrations of trace elements were in a wide range of seven orders of a magnitude. Based on these $PM_{2.5}$ data sets, a total of 6 sources were identified using PMF (Positive Matrix Factorization; secondary aerosol (34.4%), soil/road dust (20.1%), biomass burning (16.9%), incineration/fuel combustion (13.2%), vehicle exhaust(12.2%), sea-salt (3.17%). Results of our study indicate that it is very important to control illegal burning activities in agricultural area.

Distribution Characteristics of Platinum Group Elements in Roadside Dust from Daejeon, Korea (대전 도로변 먼지내 Platinum Group Elements의 분포 특성)

  • Lim, Jong-Myoung;Jeong, Jin-Hee;Lee, Jin-Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.405-416
    • /
    • 2018
  • In this research, the distribution of Platinum Group Elements (PGEs) at roadside dust in Daejeon, Korea was examined using an ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) technique. For the quality assurance of the determination, method validation based on its accuracy and precision was conducted using SRM (Standard Reference Material). It was found that the relative errors of Pt, Pd, and Rh against each SRM value were -0.7%, -10.0%, and -20.4%, respectively, while relative standard deviations for three elements were less than 10%. The concentrations of Pt, Pd and Rh in roadside dust averaged as $17.4{\pm}9.2{\mu}g/kg$, $283.6{\pm}20.5{\mu}g/kg$, and $7.3{\pm}2.8{\mu}g/kg$, respectively. The concentrations of Pt and Rh have significantly higher distribution patterns in the dust at roadside and underground parking lot than those in soil of the background or other urban area. The correlation analysis between concentrations of PGEs in roadside dust indicates that the distribution of Pt and Rh concentration were strongly affected by automobile sources.

Estimation of Medical Ultrasound Attenuation using Adaptive Bandpass Filters (적응 대역필터를 이용한 의료 초음파 감쇠 예측)

  • Heo, Seo-Weon;Yi, Joon-Hwan;Kim, Hyung-Suk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.43-51
    • /
    • 2010
  • Attenuation coefficients of medical ultrasound not only reflect the pathological information of tissues scanned but also provide the quantitative information to compensate the decay of backscattered signals for other medical ultrasound parameters. Based on the frequency-selective attenuation property of human tissues, attenuation estimation methods in spectral domain have difficulties for real-time implementation due to the complexicity while estimation methods in time domain do not achieve the compensation for the diffraction effect effectively. In this paper, we propose the modified VSA method, which compensates the diffraction with reference phantom in time domain, using adaptive bandpass filters with decreasing center frequencies along depths. The adaptive bandpass filtering technique minimizes the distortion of relative echogenicity of wideband transmit pulses and maximizes the signal-to-noise ratio due to the random scattering, especially at deeper depths. Since the filtering center frequencies change according to the accumulated attenuation, the proposed algorithm improves estimation accuracy and precision comparing to the fixed filtering method. Computer simulation and experimental results using tissue-mimicking phantoms demonstrate that the distortion of relative echogenicity is decreased at deeper depths, and the accuracy of attenuation estimation is improved by 5.1% and the standard deviation is decreased by 46.9% for the entire scan depth.

Simultaneous Determination of Tetracycline Antibiotics by 3-Phase Hollow Fiber-Liquid Phase Microextraction (HF-LPME) and HPLC-UV/Vis (3-상 속빈 섬유-액체상 미량추출법(HF-LPME)과 HPLC-UV/Vis을 이용한 Tetracycline류 항생제 동시분석)

  • Oh, Woong Kyo;Myung, Seung-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.535-542
    • /
    • 2014
  • A simple and efficient preconcentration method was developed using three-phase liquid phase microextraction prior to HPLC-UV for simultaneous extraction and determination of tetracycline antibiotics (tetracycline, oxytetracycline, and chlortetracycline). The tetracycline antibiotics were separated simultaneously on a column ($C_8$, $3.0{\times}150mm$, $3{\mu}m$) with high selectivity and sensitivity using gradient elution. Under optimized conditions (extraction solvent, heptanal; pH of donor, 9.0; pH of acceptor, 1.0; stirring speed, 700 rpm; NaCl salt, 0%; and extraction time, 60 min), enrichment factors (EF) were between 5.6 and 22.3. The limit of detection (LOD) and limit of quantitation (LOQ) in the spiked urine matrix were in the concentration range of $0.08{\sim}0.8{\mu}g/mL$ and $0.4{\sim}1.6{\mu}g/mL$, respectively. The calibration curves were linear within the range of $0.1{\sim}32{\mu}g/mL$ with the square of the correlation coefficient being more than 0.995. The precision (as a relative standard deviation, RSD) and accuracy (as a relative recovery) within working range were 1.3~9.1% and 84~118%, respectively.

A Study on Organic Solvent Measurement Using Diffusive Sampler (확산포집기를 이용한 공기 중 유기용제 포집에 관한 연구)

  • Park, Mi Jin;Yoon, Chung Sik;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.208-223
    • /
    • 1994
  • The purpose of this study was to evaluate the efficiency of diffusive(or passive) sampler in measuring airbone organic solvents. Diffusive samplers are generally simple in construction and do not require power for operation. The efficiency of the diffusive samplers has not sufficiently been investigated in Korea. Three types of samplers were studied in this study. The sampling and analytical results by passive samplers were compared with results by charcoal tube method recommended by NIOSH(National Institute for Occupational Safty and Health). The following characteristics are identified and studied as critical to the performance passive monitors; recovery, reverse diffusion, storage stability, accuracy and precision, face velocity and humidity, n-Hexane, TCE(trichloroethylene) and toluene were used as test vapors. A dynamic vapor exposure system consisting of organic vapor generator and sampling chamber for evaluating diffusive samplers are made. The results of the study are summarized as follows. 1. NIOSH recommands that the overall accuracy of a sampling method in the range of 0.5 to 2.0 times the occupational health standard should be ${\pm}25$ percent for 95 percent confidence level. Among three types of diffusive samplers, sampler A has permeation membrane and samplers Band C have diffusive areas, samplers A and B met the criterion that overall accuracy for 95% confidence level of the samplers were within ${\pm}25$ percent of the reference value. Sampler C had overall accuracy ${\pm}9.6%$ and ${\pm}11.8%$ in hexane and TCE, respectively. The concentration of toluene was overestimated in sampler C with overall accuracy of ${\pm}43.9%$. 2. The desorption efficiencies of diffusive samplers were 96-107%. 3. There was no significant sampe loss during four weeks of storage both with and without refrigeration. 4. There was no significant reverse diffusion, when the samplers were exposure to clean air for 2 hours after sampling for 2 hours at the level of 2 TLY. 5. In case of 8 hours sampling, relative differences(RD) of concentrations between charcoal tube method and diffusive method were 15-39%, 13-46%, and 4-35% for sampler A, B and C, respectively. The performance was poor in 8 hours sampling for multiple substance monitors. 6. At high velocity(100 cm/sec), samplers B and C overestimated the concentrations of organic vapors, and sampler A with permeation membrance gave better results. 7. At 80% relative humidity, samplers showed no siginificant effect. Low humidity also did not affect the diffusive samplers.

  • PDF

Simultaneous Determination of Aflatoxins and Ochratoxin A in Pork by LC-MS/MS (LC-MS/MS를 이용한 돼지고기 중 총아플라톡신 및 오크라톡신 A 동시분석법 확립)

  • Paek, Ockjin;Park, Songyi;Park, Ki Hun;Kim, Sheen-Hee;Suh, Saejung;Yoon, Hae Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.194-200
    • /
    • 2016
  • Aflatoxins and ochratoxin A (AFTs and OTA) are secondary fungal metabolites produced by several moulds, mainly by Aspergillus flavus by Aspergillus ochraceus and Penicillium verrucosum, and these toxins can be transferred to animals and humans through the ingestion of contaminated feed and food. This study was to develop the analytical method for determination the levels of AFTs ($B_1$, $B_2$, $G_1$ and $G_2$) and OTA in pork. The AFTs and OTA were analyzed simultaneously by electrospray ionization in positive ion mode and mass reaction monitoring (MRM) after solid phase extract (SPE) columns clean-up. Performance characteristics, such as accuracy, precision, linear range, limit of detection (LOD) and quantification (LOQ), were also determined. Matrix-matched standard calibration was used for quantification, obtaining the recoveries in the range of 67.3~108.2% with the relative standard deviations of < 20%. Limits of detection and quantification were also estimated, obtaining the limits of quantification ranged in $0.7{\sim}1.3{\mu}g/kg$. The results of the inter-day study, which was performed with pork samples for 3 days, showed an accuracy of 92.0~109.9%. The precisions (expressed as relative standard deviation values) for the inter day variation were 2.6~17.8%. The method developed in this study was able to carry out the analysis with the satisfactory intensity and accuracy.

Effects of Drying Methods Based on Exhaust Cycle and Time on the Quality and Drying of Red Peppers

  • Nam, Sang Heon;Ha, Yu Shin;Kim, Tae Wook
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.101-110
    • /
    • 2014
  • Purpose: The purpose of this study is to develop a system to optimize drying potential energy of the exhausted hot air by changing relative humidity of the air. This study modified the conventional drying method into a drying method changing exhaust cycle and time in order to control the relative humidity of the exhausted hot air during drying process. Method: A valve on the vent was controlled according to a preset time to change the exhaust cycle and time. This study analyzed the influence of the two different types of drying method on the drying characteristics, required energy, and quality of the dried peppers: conventional drying method exhausting hot air continuously and new drying method controlling exhaust cycle and time. Results: Drying characteristics based on exhaust time showed that drying time increased with exhaust time, and specific energy consumption was reduced by 28% from 18.39 MJ/kg (conventional method) to 13.24 MJ/kg when exhaust time was set to one minute. Drying characteristics based on heating time showed that drying time increased with heating time and specific energy consumption was reduced by 30% from 18.39 MJ/kg (conventional method) to 12.87 MJ/kg when exhaust time was set to 22 minutes. Drying characteristics based on exhaust cycle showed that drying time increased with exhaust cycle, and specific energy consumption was reduced by 31% from 18.39 MJ/kg (conventional method) to 12.69 MJ/kg when exhaust time was set to one minute and exhaust cycle was set to 22 minutes before drying and 40 minutes after drying. The quality of the dried red peppers showed that capsaicin, color, and sugar content were high as 34.87 mg/100g, 66.33, and 11.87%, respectively, when exhaust time was set to one minute and exhaust cycle was set to 22 minutes before drying and 40 minutes after drying. Conclusions: In order to utilize the drying potential energy of the exhausted air during drying process, the conventional drying method was modified into the drying method controlling exhaust cycle and time. The results showed that drying with exhaust cycle of one minute was more efficient in terms of drying time, required energy, and quality of the dried peppers than the one with exhaust cycle of 20~40 minutes.