• Title/Summary/Keyword: Relative error compensation

Search Result 46, Processing Time 0.025 seconds

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

Turkish Version of the Perceived Future Decent Work Securement Scale: Validity and Reliability for Nursing Students

  • Oznur Ispir Demir;Betul Sonmez;Duygu Gul;Sergul Duygulu
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.332-339
    • /
    • 2023
  • Background: The aim of the study was to test the validity and reliability of the Perceived Future Decent Work Securement Scale for Turkish nursing students. Methods: A cross-sectional, methodological study design was used. The study was carried out at three nursing undergraduate programs in Turkey during the academic year of 2020-2021 with 336 senior nursing students. Language validity and content validity analyses were performed for the scale adaptation, followed by confirmatory factor analysis (CFA) for construct validity. The reliability of the scale was determined using the test-retest and Cronbach's alpha internal consistency coefficient. Results: The scale-content validity index score was 0.988. In CFA, all goodness-of-fit indices verified the acceptable fit of the model; its root mean square error of approximation was 0.076; the normed fit index was 0.909; the standardized mean square residual was 0.097; the relative fit index was 0.881; the goodness-of-fit index was 0.915; the adjusted goodness-of-fit index was 0.872 and χ2/df = 2.932. The overall reliability was α = 0.86. The item-total correlations of the scale were above the acceptable level, and the test-retest analysis had a high correlation. The access to healthcare (14.68, SD 3.53) obtained the highest average score, and the adequate compensation (8.52, SD 3.76) was the lowest rated by the senior nursing students. Conclusion: The Perceived Future Decent Work Securement Scale is a valid and reliable scale to assess nursing students' future decent work securement.

Respiratory air flow transducer calibration technique for forced vital capacity test (노력성 폐활량검사시 호흡기류센서의 보정기법)

  • Cha, Eun-Jong;Lee, In-Kwang;Jang, Jong-Chan;Kim, Seong-Sik;Lee, Su-Ok;Jung, Jae-Kwan;Park, Kyung-Soon;Kim, Kyung-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1082-1090
    • /
    • 2009
  • Peak expiratory flow rate(PEF) is a very important diagnostic parameter obtained from the forced vital capacity(FVC) test. The expiratory flow rate increases during the short initial time period and may cause measurement error in PEF particularly due to non-ideal dynamic characteristic of the transducer. The present study evaluated the initial rise slope($S_r$) on the flow rate signal to compensate the transducer output data. The 26 standard signals recommended by the American Thoracic Society(ATS) were generated and flown through the velocity-type respiratory air flow transducer with simultaneously acquiring the transducer output signal. Most PEF and the corresponding output($N_{PEF}$) were well fitted into a quadratic equation with a high enough correlation coefficient of 0.9997. But only two(ATS#2 and 26) signals resulted significant deviation of $N_{PEF}$ with relative errors>10%. The relationship between the relative error in $N_{PEF}$ and $S_r$ was found to be linear, based on which $N_{PEF}$ data were compensated. As a result, the 99% confidence interval of PEF error was turned out to be approximately 2.5%, which was less than a quarter of the upper limit of 10% recommended by ATS. Therefore, the present compensation technique was proved to be very accurate, complying the international standards of ATS, which would be useful to calibrate respiratory air flow transducers.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Adaptive Correlation Receiver for Frequency Hopping Multi-band Ultra-Wideband Communications (주파수 도약 멀티 밴드 초 광대역 통신을 위한 적응적 상관 수신기 방식)

  • Lee, Ye-Hoon;Choi, Myeong-Soo;Lee, Seong-Ro;Lee, Jin-Seok;Jung, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.401-407
    • /
    • 2009
  • The multi-band (MB) ultra-wideband (UWB) communication system divides its available frequency spectrum in 3.1 to 10.6GHz into 16 sub-bands, which leads to inherent disparities between carrier frequencies of each sub-band. For instance, the highest carrier frequency is 2.65 times higher than the lowest one. Since the propagation loss is proportional to the square of the transmission frequency, the propagation loss on the sub-band having the highest carrier frequency is approximately 7 times larger than that on the sub-band having the lowest carrier frequency, which results in disparities between received signal powers on each sub-band. In this paper, we propose a novel correlation scheme for frequency hopping (FH) MB UWB communications, where the correlation time is adaptively adjusted relative to the sub-band, which reduces the disparity between the received signal energies on each sub-band. Such compensation for lower received powers on sub-bands having higher carrier frequency leads to an improvement on the total average bit error rate (BER) of the entire FH MB UWB communication system. We analyze the performance of the proposed correlation scheme in Nakagami fading channels, and it is shown that the performance gain provided by the proposed correlator is more significant as the Nakagami fading index n increases (i.e., better channel conditions).

Legislative Study on the Mitigation of the Burden of Proof in Hospital Infection Cases - Focusing on the revised Bürgerliches Gesetzbuch - (병원감염 사건에서 증명책임 완화에 관한 입법적 고찰 - 개정 독일민법을 중심으로 -)

  • Yoo, Hyun Jung
    • The Korean Society of Law and Medicine
    • /
    • v.16 no.2
    • /
    • pp.159-193
    • /
    • 2015
  • Owing to causes such as population aging, increased use of various medical devices, long-term hospitalization of various patients with reduced immune function such as cancer, diabetes, and organ transplant patients, and the growing size of hospitals, hospital infections are continuing to increase. As seen in the MERS crisis of 2015, hospital infections have become a social and national problem. In order to prevent damage due to such hospital infections, it is necessary to first strictly implement measures to prevent hospital infections, while, on the other hand, providing proper relief of damage suffered due to hospital infections. However, the mainstream attitude of judicial precedents relating to hospital infection cases has been judged to in fact shift responsibility over damages due to hospital infections on the patient. In light of the philosophy of the damage compensation system, whose guiding principle if the fair and proper apportionment of damages, there is a need to seek means of drastically relaxing the burden of proof on the patient's side relative to conventional legal principles for relaxing the burden of proof, or the theory of de facto estimation. In relation to such need, the German civil code (Burgerliches Gesetzbuch), which defines contracts of medical treatment as typical contracts under the civil code, and has presumption of negligence provisions stipulating that, in cases such as hospital infections which were completely under the control of the medical care providers, if risks in general medical treatment have been realized which cause violations of the life, body, or health of patients, error on the part of the person providing medical care is presumed, was examined. Contracts of medical treatment are entered into very frequently and broadly in the everyday lives of the general public, with various disputes owing thereto arising. Therefore, it is necessary to, by defining contracts of medical treatment as typical contracts under the civil code, regulate the content of said contracts, as well as the proof of burden when disputes arise. If stipulations in the civil code are premature as of yet, an option may be to regulate through a special act, as is the case with France. In the case of hospital infection cases, it is thought that 'legal presumption of negligence' relating to 'negligence in the occurrence of hospital infections,' which will create a state close to equality of arms, will aid the resolution of the realistic issue of the de facto impossibility of remedying damages occurring due to negligence in the process of occurrence of hospital infections. Also, even if negligence is presumed by law, as the patient side is burdened with proving the causal relationships, such drastic confusion as would occur if the medical care provider side is found fully liable if a hospital infection occurs may be avoided. It is thought that, alongside such efforts, social insurance policy must be improved so as to cover the expenses of medical institutions having strictly implemented efforts to prevent hospital infections in the event that they have suffered damages due to a hospital infection accident, and that close future research and examination into this matter will be required.

  • PDF