• Title/Summary/Keyword: Relative density model

Search Result 327, Processing Time 0.027 seconds

Recommendation of Nitrogen Topdressing Rates at Panicle Initiation Stage of Rice Using Canopy Reflectance

  • Nguyen, Hung T.;Lee, Kyu-Jong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.141-150
    • /
    • 2008
  • The response of grain yield(GY) and milled-rice protein content(PC) to crop growth status and nitrogen(N) rates at panicle initiation stage(PIS) is critical information for prescribing topdress N rate at PIS(Npi) for target GY and PC. Three split-split-plot experiments including various N treatments and rice cultivars were conducted in Experimental Farm, Seoul National University, Korea in 2003-2005. Shoot N density(SND, g N in shoot $m^{-2}$) and canopy reflectance were measured before N application at PIS, and GY, PC, and SND were measured at harvest. Data from the first two years(2003-2004) were used for calibrating the predictive models for GY, PC, and SND accumulated from PIS to harvest using SND at PIS and Npi by multiple stepwise regression. After that the calibrated models were used for calculating N requirement at PIS for each of nine plots based on the target PC of 6.8% and the values of SND at PIS that was estimated by canopy reflectance method in the 2005 experiment. The result showed that SND at PIS in combination with Npi were successful to predict GY, PC, and SND from PIS to harvest in the calibration dataset with the coefficients of determination ($R^2$) of 0.87, 0.73, and 0.82 and the relative errors in prediction(REP, %) of 5.5, 4.3, and 21.1%, respectively. In general, the calibrated model equations showed a little lower performance in calculating GY, PC, and SND in the validation dataset(data from 2005) but REP ranging from 3.3% for PC and 13.9% for SND accumulated from PIS to harvest was acceptable. Nitrogen rate prescription treatment(PRT) for the target PC of 6.8% reduced the coefficient of variation in PC from 4.6% in the fixed rate treatment(FRT, 3.6g N $m^{-2}$) to 2.4% in PRT and the average PC of PRT was 6.78%, being very close to the target PC of 6.8%. In addition, PRT increased GY by 42.1 $gm^{-2}$ while Npi increased by 0.63 $gm^{-2}$ compared to the FRT, resulting in high agronomic N-use efficiency of 68.8 kg grain from additional kg N. The high agronomic N-use efficiency might have resulted from the higher response of grain yield to the applied N in the prescribed N rate treatment because N rate was prescribed based on the crop growth and N status of each plot.

  • PDF

Construction and Application of an Automated Apparatus for Calculating the Soil-Water Characteristic Curve (자동 흙-함수특성곡선 시험장치 구축 및 활용)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.281-295
    • /
    • 2010
  • A new, automated apparatus is proposed for calculating the Soil-Water Characteristic Curve (SWCC), representing a simple and easily applied testing device for continuous measurements of the volumetric water content and suction of unsaturated soils. The use of this apparatus helps to avoid the errors that arise when performing experiments. Consequently, the apparatus provides greater accuracy in calculating the SWCC of unsaturated soils. The apparatus is composed of a pressure panel, flow cell, water reservoir, air bubble trap, balance, sample-preparation accessories, and measurement system, among other components. The air pressure can attain 300 kPa, and a general test can be completed in a short time. The apparatus can simply control the drying process and wetting process. The changes in volumetric water content that occur during the drying and wetting processes are shown directly in the SWRC program, in real time. As a case study, we performed an SWCC test of Joomunjin sand (75% relative density) to measure matric suction and volumetric water content during both the drying and wetting processes. The test revealed hysteresis behavior, whereby the water content on the wetting curve is always lower than that on the drying curve for a specific matric suction, during the wetting and drying processes. Based on the test results, SWCCs were estimated using the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The van Genuchten model performed best for the given soil conditions, as it yielded the highest coefficient of determination.

Biocompatibility of porous hydroxyapatite ceramics prepared from bovine bones (소 뼈로부터 제조한 다공형 하이드록시아파타이트 세라믹스의 생체친화 특성)

  • Lee, Jong-Kook;Ko, Young-Hwa;Lee, Nan-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.139-146
    • /
    • 2012
  • Natural hydroxyapatite powder was obtained from the calcination of bovine bones and its porous compacts were fabricated by pressureless sintering at 1100 and $1200^{\circ}C$ for 1h. To evaluate and compare their biocompatibility with porosity, we investigated the support of osteoblast cells growth and cytotoxicity using the MG-63 cell line model in vitro. Sintered hydroxyapatite ceramics have a porous microstructure with a relative density of 65 % at $1100^{\circ}C$ and 82 % at $1200^{\circ}C$. Cells adherence to the surface of hydroxyapatite ceramics was observed in a day after the cell culture, and the spreading of cytoplasm around the nucleus was shown after 3 day cell culture. Most of cells were extended to the surface of hydroxyapatite through the wide area. Cell viability was nearly the same till 3 days culturing. But the rate of cell growth is higher in the specimen sintered at $1100^{\circ}C$ than that of $1200^{\circ}C$. It indicates that the porosity is an important factor to enhance the cell viability in the porous hydroxyapatite ceramics derived from bovine bones.

An Optimum Slanting Angle in Reticulated Root Piles Installation under Compressive and Uplift Loads (압축 및 인발하중을 받는 그물식 뿌리말뚝의 최적 타설경사각)

  • 이승현;김명보
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-84
    • /
    • 1996
  • In order to investigate the influence of slanting angle of reticulated root piles(RRP) on their bearing capacities, model tests of compressive and uplift loads on RRP with different slanting angles, which were installed in sandy soils with a relative density of 47%, were carried out. Each pile which is made of a steel bar of 5mm in diameter and 300mm in length, is coated with sand to be 6.5mm in diameter. One set of RRP consists of 8 piles which are installed in circular patterns forming two concentric circles, each of which has 4 piles. Slanting angles of RRP for load tests are 0$^{\circ}$, 5$^{\circ}$, 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, and 25$^{\circ}$. In addition, compressive load tests on circular footing whose diameter is the same as the outer circle of RRP were carried out. Test results show that maximum load bearing capacities of RRP by regression analysis are obtained at about 12$^{\circ}$ and 13$^{\circ}$ of slanting angles for compressive and uplift load tests, respectively. Maximum compressive bearing capacity is estimated to be 13oA bigger than that of the vertical RRP and 95% bigger than that of surface footing. Maximum uplift capacity is estimated to be 21% bigger than that of the vertical RRP. And it can be appreciated that increasing the slanting angle makes the load -Settlement behavior more ductile.

  • PDF

A Micro Finite Element Analysis on Effects of Altering Monomer-to-Powder ]Ratio of Bone Cement During Vertebroplasty (골 시멘트 중합 비율 변경이 척추성형술 치료에 미치는 영향에 대한 비교 분석)

  • 김형도;탁계래;김한성
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.451-458
    • /
    • 2002
  • Osteoporosis is a systemic skeletal disease caused by low bone mass and the decrease of bone density in the microstructure of trabecular bone. Drug therapy(PTH Parathyroid hormone) may increase the trabecular thickness and thus bone strength. Vertebroplasty is a minimally invasive surgery foy the treatment of osteoporotic vertebral compression fracture. This Procedure includes Puncturing vertebrae and filling with Polymethylmethacrylate(PMMA). Although altering recommended monomer-to-Powder ratio affects material properties of bone cement, clinicians commonly alter the mixture ratio to decrease viscosity and increase the working time. The Purposes of this study were to analyze the effect of 4he monomer-to-powder ratio on the mechanical characteristics of trabecular. In this paper, the finite element model of human vertebral trabecualr bone was developed by modified Voronoi diagram, to analyze the relative effect of hormone therapy and vertebroplasty at the treatment of osteoporotic vertebrae. Trabeuclar bone models for vertebroplasty with varied monomer-to-Powder ratio(0.40∼1.07 ㎖/g) were analyzed. Effective modulus and strength of bone cement-treated models were approximately 60% of those of intact models and these are almost twice the values of hormone-treated models. The bone cement models with the ratio of 0.53㎖/g have the maximum modulus and strength. For the ratio of 1.07㎖/g, the modulus and strength were minimum(42% and 49% respectively) but these were greater than those for drug therapy. This study shows that bone cement treatment is more effective than drug therapy. It is found that in vertebroplasty, using a monomer-to-powder ratio different from that recommended by manufacturer nay significantly not only reduce the cement's material Properties but also deteriorate the mechanical characteristics of osteoporotic vertebrae.

Amelioration of metabolic disturbances and adipokine dysregulation by mugwort (Artemisia princeps P.) extract in high-fat diet-induced obese rats (쑥 (Artemisia princeps P.) 추출물이 고지방식이를 급여한 흰쥐의 대사장애 및 아디포카인 조절에 미치는 영향)

  • Kim, Yun-Hye;Park, Chung-Mu;Yoon, Gun-Ae
    • Journal of Nutrition and Health
    • /
    • v.49 no.6
    • /
    • pp.411-419
    • /
    • 2016
  • Purpose: Dysregulation of adipokines caused by excess adipose tissue has been implicated in the development of obesity-related metabolic diseases. This study evaluated the effects of mugwort (Artemisia princeps Pampanini) ethanol extract on lipid metabolic changes, insulin resistance, adipokine balance, and body fat reduction in obese rats. Methods: Male Sprague-Dawley rats were fed either a control diet (NC), high-fat diet (HF, 40% kcal from fat), or high-fat diet with 1% mugwort extract (HFM) for 6 weeks. Results: Epididymal and retroperitoneal fat mass increased in the HF group compared with the NC group, and epididymal fat mass was reduced in the HFM group (p < 0.05). No difference was observed in serum levels of total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) among the groups. However, triglyceride (TG), TG/HDL-C ratio, and TC/HDL-C ratio increased in the HF group and significantly decreased in the HFM group. TG and TC levels in the liver were significantly higher in the HF group, whereas these levels were significantly reduced in the HFM group. HF rats had lower insulin sensitivity as indicated by increased homeostasis model assessment of the insulin resistance (HOMA-IR) value. HOMA-IR values significantly decreased in the HFM group. Adiponectin levels were higher in NC rats, and their leptin and PAI-1 levels were lower. Relative balance of adipokines was reversed in the HF group, with lower adiponectin levels but higher leptin and PAI-1 levels. In contrast, the HFM group maintained balance of adiponectin/leptin and adiponectin/PAI-1 levels similar to NC by reducing leptin and PAI-1 levels. Conclusion: Overall data indicated that mugwort extract can be effective in alleviating metabolic dislipidemia, insulin resistance, and adipokine dysregulation induced by a high-fat diet.

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices (모바일용 저잡음 6축 관성센서 IC의 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.397-407
    • /
    • 2015
  • In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.

Effect of Partially Oxidized Ti Powder on Electrical Properties and Microstructures of $BaTiO_3$-based Ceramics ($BaTiO_3$계 세라믹스의 전기적 성질과 미세조직에 미치는 부분산화 Ti 분말 첨가의 영향)

  • Kim, Jun-Gyu;Jo, Won-Seung;Park, Gyeong-Sun
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.671-676
    • /
    • 2000
  • $BaTiO_3$-based ceramics with partially oxidized Ti powders were prepared by sintering at $1350^{\circ}C$ for 1 h in v vacuum, and then heated in air. In this study, the effect of partially oxidized Ti powders on electrical properties and microstructures of $BaTiO_3$-based ceramics was investigated. It was found out that the semiconductive $BaTiO_3$-based ceramics beζame to show excellent PTCR (more than $10^5$) characteristic by adding 5~7 vol% of partially oxidized Ti powder. Also, it was found out that the sintered compact had extremely porous and fine-grained microstructure. The relative density and grain size of sintered compact with 5 vol% of partially oxidized Ti powders were 54% and $1.3\;{\mu\textrm{m}}$, respectively. The mechanism for the development of PTCR characteristic in $BaTiO_3$-based ceramics with partially oxidized Ti powders due to the adsorption of oxygen at grain boundaries, and could be explained, based on Heywang model.

  • PDF

The Variations of Stratospheric Ozone over the Korean Peninsula 1985~2009 (한반도 상공의 오존층 변화 1985~2009)

  • Park, Sang Seo;Kim, Jhoon;Cho, Nayeong;Lee, Yun Gon;Cho, Hi Ku
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.349-359
    • /
    • 2011
  • The climatology in stratospheric ozone over the Korean Peninsula, presented in previous studies (e.g., Cho et al., 2003; Kim et al., 2005), is updated by using daily and monthly data from satellite and ground-based data through December 2009. In addition, long-term satellite data [Total Ozone Mapping Spectrometer (TOMS), Ozone Monitoring Instrument (OMI), 1979~2009] have been also analyzed in order to deduce the spatial distributions and temporal variations of the global total ozone. The global average of total ozone (1979~2009) is 298 DU which shows a minimum of about 244 DU in equatorial latitudes and increases poleward in both hemispheres to a maximum of about 391 DU in Okhotsk region. The recent period, from 2006 to 2009, shows reduction in total ozone by 6% relative to the values for the pre-1980s (1979~1982). The long-term trends were estimated by using a multiple linear regression model (e.g., WMO, 1999; Cho et al., 2003) including explanatory variables for the seasonal variation, Quasi-Biennial Oscillation (QBO) and solar cycle over three different time intervals: a whole interval from 1979 to 2009, the former interval from 1979 to 1992, and the later interval from 1993 to 2009 with a turnaround point of deep minimum in 1993 is related to the effect of Mt. Pinatubo eruption. The global trend shows -0.93% $decade^{-1}$ for the whole interval, whereas the former and the later interval trends amount to -2.59% $decade^{-1}$ and +0.95% $decade^{-1}$, respectively. Therefore, the long-term total ozone variations indicate that there are positive trends showing a recovery sign of the ozone layer in both North/South hemispheres since around 1993. Annual mean total ozone (1985~2009) is distributed from 298 DU for Jeju ($33.52^{\circ}N$) to 352 DU for Unggi ($42.32^{\circ}N$) in almost zonally symmetric pattern over the Korean Peninsula, with the latitudinal gradient of 6 DU $degree^{-1}$. It is apparent that seasonal variability of total ozone increases from Jeju toward Unggi. The annual mean total ozone for Seoul shows 323 DU, with the maximum of 359 DU in March and the minimum of 291 DU in October. It is found that the day to day variability in total ozone exhibits annual mean of 5.7% in increase and -5.2% in decrease. The variability as large as 38.4% in increase and 30.3% in decrease has been observed, respectively. The long-term trend analysis (e.g., WMO, 1999) of monthly total ozone data (1985~2009) merged by satellite and ground-based measurements over the Korean Peninsula shows increase of 1.27% $decade^{-1}$ to 0.80% $decade^{-1}$ from Jeju to Unggi, respectively, showing systematic decrease of the trend magnitude with latitude. This study also presents a new analysis of ozone density and trends in the vertical distribution of ozone for Seoul with data up to the end of 2009. The mean vertical distributions of ozone show that the maximum value of the ozone density is 16.5 DU $km^{-1}$ in the middle stratospheric layer between 24 km and 28 km. About 90.0% and 71.5% of total ozone are found in the troposphere and in the stratosphere between 15 and 33 km, respectively. The trend analysis reconfirms the previous results of significant positive ozone trend, of up to 5% $decade^{-1}$, in the troposphere and the lower stratosphere (0~24 km), with negative trend, of up to -5% $decade^{-1}$, in the stratosphere (24~38 km). In addition, the Umkehr data show a positive trend of about 3% $decade^{-1}$ in the upper stratosphere (38~48 km).

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.