• Title/Summary/Keyword: Relative air-fuel ratio

Search Result 25, Processing Time 0.026 seconds

Dynamic Decoupler Design for EGR and VGT Systems in Passenger Car Diesel Engines (승용디젤엔진 EGR 및 VGT 제어시스템의 동적특성을 고려한 Decoupler 설계 연구)

  • Hong, Seungwoo;Park, Inseok;Sohn, Jeongwon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.182-189
    • /
    • 2014
  • This paper proposes a decoupler design method to reduce interaction between exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems in passenger car diesel engines. The EGR valve and VGT vane are respectively used to control air-to-fuel ratio (AFR) of exhaust gas and intake pressure. A plant model for EGR and VGT systems is defined by a first order transfer function plus time-delay model, and the loop interaction between these systems is analyzed using a relative normalized gain array (RNGA) method. In order to deal with the loop interaction, a design method for simplified decoupler is applied to this study. Feedback control algorithms for AFR and intake pressure are composed of a compensator using PID control method and a prefilter. The proposed decoupler is evaluated through engine experiment, and the results successfully showed that the loop interaction between EGR and VGT systems can be reduced by using the proposed decoupler. Furthermore, it presents stable performance even off from the designed operating point.

Fuel Evaporation Characteristics of a Port Injection Type Motorcycle Engine with Changing Fuel Spray Timing (포트분사식 이륜차 엔진의 연료 분사시기에 따른 연료 증발 특성)

  • Lee Kihyung;Kang Inbo;Kim Hyungmin;Baik Seungkook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1360-1368
    • /
    • 2005
  • This study investigates the characteristics of spray, such as evaporation rate and spray trajectory, for a 4-hole injector which is applied to a 4-valve motorcycle gasoline engine. Three dimensional, unsteady, compressible flow and spray within the intake-port and cylinder have been simulated using the VECTIS code. Spray characteristics were investigated at 6000 rpm engine speed. Furthermore, we visualized fuel behavior in the intake-port using a CCD camera synchronized with a stroboscope in order to compare with the analytical results. Boundary and intial conditions were employed by complete 1-D simulation of the engine using the WAVE code. Fuel was injected into the intake-port at two time intervals relative to the position of the intake valves so that the spray arrived when the valves were closed and fully open. The results showed that the trajectory of the spray was directed towards the lower wall of the port with injection against the closed valves. With open valve injection, a large portion of the fuel was lifted by the co-flowing air towards the upper half of the port and this was confirmed by simulation and visualization.

Cycle-to-Cycle Fluctuations in a Spark Ignition Engine at Low Speed and Load

  • Han, Sung Bin;Hwang, Sung Il
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • Cycle-to-cycle variation has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under lean and highly diluted operation conditions. At a part load, some of the cycles tend to knock, while others may have incomplete combustion by the time the exhaust valve opens. An experimental study has been performed in order to evaluate the relative contribution of several relevant parameters on the cyclic variability in spark ignition engines. In general, the stability of engine operation is improved with fuel injector according to the optimal injection timing, but the stability of engine operation at idle is not improved compared with a practical gasoline engine. In this study, we investigated the relationship of the effect of operating conditions for the stability at low speed and load.

Proposal and Validation of a New Flame Stability Diagram to Gas Estimate Interchangeability (가스호환성 판정에 편리한 새로운 화염안정영역의 도시법의 제안 및 유용성 검토)

  • Lee, Chang-Eon;Kim, Jong-Min;Hwang, Cheol-Hong;Kim, Jong-Hyun
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • A flame stability diagram in a partially premixed flame is typically expressed using the axis coordinates of heat input rate and equivalence ratio. These diagrams are inadequate for identifying changes in combustion conditions and flame stability when a reference fuel is substituted with other fuels under identical operating conditions. This study proposes a new type of diagram and validates it experimentally. In this new diagram, the axis coordinates are air flow rate and Wobbe fuel flow rate, defined as the fuel flow rate multiplied by the square root of the relative density. The diagram was validated in trials using various fuels, including $CH_4$, $C_{3}H_{8}$, and LFG-$C_{3}H_{8}$ mixed fuels, in a domestic gas-range and an gas interchangeability test burner. The results of these trials show that the new diagram can provide information useful for assessing gas interchangeability of combustion conditions and flame stability when one fuel is substituted with another under identical operating conditions.

  • PDF

Combustion Characteristics of Hydrogen by the Thermodynamic Properties Analysis

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.84-90
    • /
    • 2015
  • Hydrogen has some remarkably high values of the key properties for transport processes, such as kinematic viscosity, thermal conductivity and diffusion coefficient. Hydrogen, as an energy medium, has some distinct benefits for its high efficiency and convenience in storage, transportation and conversion. Hydrogen has much wider limits of flammability in air than methane, propane or gasoline and the minimum ignition energy is about an order of magnitude lower than for other combustibles. Statistical thermodynamics provides the relationships that we need in order to bridge this gap between the macro and the micro. Our most important application will involve the calculation of the thermodynamic properties of the ideal gas.

Combustion Radicals and NOx Emissions Characteristics by Control of Partially Premixed Flames (부분적 예혼합화염제어에 의한 연소 라디칼 및 NOx 배출물 특성)

  • Kim, Tae-Gwon;Jang, Jun-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.561-569
    • /
    • 2002
  • This paper presents an investigation on $C_2$, CH, OH radicals and NOx emissions in partially premixed flames with acoustic excitation. The radicals are visualized by the digital image technique with optical filters and ICCD camera while NOx emissions are determined by a chemiluminescent detection(NOx analyser). The measurements are made in flames with an overall equivalence ratio (${\phi}_o$) 0.5 and a center tube equivalence ratio(${\phi}_c$) varing from 1.1 to 5.0 for a constant fuel flow rate. In the case of excitation, the visual shape of the flame is changed from laminar to turbulent-like flames. Images of $C_2$, CH, and OH radicals resemble those of the flame appearances as the excitation phase is varied, and the radicals generated at the upstream are convected toward the downstream. It is inferred that the flame characteristics is affected by the flow characteristics of air-fuel mixture. In the case of acoustic excitation, OH radicals are much increased relative to unexcitation. From the radicals and flame visualization under acoustic excitation, the reduction of flame length affects the shorter residence time of center tube mixture, and significantly influences the NOx reduction.

A study on the performance characteristics of annular-reverse combustor for APU (환형역류형 APU 연소기 성능특성 연구)

  • Lee, Dong-Hun;Choi, Seong-Man;Han, Yeong-Min;Ko, Yeong-Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.67-74
    • /
    • 2001
  • The annular-reverse combustor was designed for APU combustor and a three dimensional analysis for reactive flow in the combustor was performed. At the same time, the experimental work was performed in KARl combustor test facility. In this study we found out that tangential swirl type combustor is good for flame holding than single vortex type combustor. The flame tube main hole size and relative position are very important parameters for combustor general performance. The ignition characteristics are strongly depend on the air fuel ratio with combustor inlet volume flow ratio.

  • PDF

An Experimental Study on the Performance Characteristics of a Hydrogen Fueled LPi Engine (LPi기관에서 수소첨가에 따른 성능특성에 관한 실험적연구)

  • Choi, Gyeung Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • 환경문제와 석유자원의 고갈이 많은 연구자들을 기존 탄화수소연료를 대체할수 있는 재생 가능한 연료를 구하는데 많은 노력을 기울이고 있다. 수소연료는 유해배기물질이 없는 연소와 또한 연소후에 재생 가능한 물성분만 배출하는 속성으로 미래의 청정에너지로 각광을 받고 있다. 이러한 이유로 수소연료는 수송기계의 연료로도 주목을 받고 있다. 따라서 수소연료기관 개발은 21세기에도 지속적으로 진행될 것이다. 이에대한 초기연구로 기체 LPG 연료가 아닌 액체 LPG 연료를 흡기관에 분사하여 기화된 LPG 연료를 엔진으로 흡입하는 LPi엔진에 수소연료를 과급하여 엔진에 성능을 연구하고자 하였다.

Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header (디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향)

  • Jeong Young-Jun;Kim Seo-Young;Kim Kwang-Ho;Kwak Jae-Su;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.

A Study on the Combustion Performance by the Improvement of In Cylinder Flow Motion in the Natural Gas Engine (실린더내 흡기유동개선이 천연가스엔진의 연소성능에 미치는 영향 연구)

  • Jeong, D.S.;Suh, S.W.;Oh, S.M.;Uhm, J.H.;Chang, Y.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.90-96
    • /
    • 1995
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns is analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF