• Title/Summary/Keyword: Relative Velocity Ratio

Search Result 128, Processing Time 0.024 seconds

Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Horizontal Tubes of Modular Shell and Tube-Bundle Heat Exchanger (모듈형 쉘-관군 열교환기에서의 응축열전달 및 압력강하 특성에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Park, Byung-Kyu;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.191-198
    • /
    • 2001
  • A numerical analysis of the heat and mass transfer and pressure drop characteristics in modular shell and tube bundle heat exchanger was carried out. Finite Concept Method based on FVM and $k-\varepsilon$ turbulent model were used for this analysis. Condensation heat transfer enhanced total heat transfer rate $4\sim8%$ higher than that of dry heat exchanger. With increasing humid air inlet velocity, temperature and relative humidity, and with decreasing heat exchanger aspect ratio and cooling water velocity, total heat and mass transfer rate could be increased. Cooling water inlet velocity had little effect on total heat transfer.

  • PDF

An Experimental Study on the Carbonation Properties of Concrete According to Accelerating Carbonation Conditions (촉진중성화 조건에 따른 콘크리트의 중성화 특성에 관한 실험적 연구)

  • 문형재;이의배;송민섭;주지현;조봉석;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.41-44
    • /
    • 2004
  • Recently, in the case of domestic, for all that the deterioration environment about the carbonation of reinforced concrete structures is accelerated, systematic diagnosis and researches are not completed. And the selection techniques of repair material and method used under the situation that the indicator and the performance evaluation method are nor established are dependant on existing experience. Therefore, the purpose of this study is intend to present fundamental data for the reasonable selection of repair material and method. durability design and longevity on the deteriorated reinforced concrete structures, through computing the carbonation depth and velocity coefficient by accelerating carbonation test under various accelerating conditions and investigating the application of carbonation evaluation method. The results of this study are as follow; The resistances to carbonation are increased when the W/C ratio if lower and the treatment of surface coating is executed. And the carbonation depth and velocity coefficient according to accelerating carbonation test conditions are increased when the conditions of temperature, relative humidity and $CO_2$density are higher individually.

  • PDF

Effects of knee flexor isokinetic training on Knee muscles strength and walking speed in hemiplegia (뇌졸중 환자에서 슬관절 굴근의 등속성운동이 슬관절 근력 및 보행에 미치는 영향)

  • Jang, Moon-Heon
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.2
    • /
    • pp.711-725
    • /
    • 2000
  • The purpose of this study was to determine the effects of knee flexor isokinetic training on the mean peak torque of knee muscles and hamstrings-to-quadriceps ratio(H/Q ratio) in hemiplegia able to walk independently for more than 10 meters, to analyze the effect of torque increasing on functional aspects; fatigability and ambulation times, also. Forty-one adult subjects with hemiplegia secondary to a stroke partipated in this study. All participants were in/out patients at the College of Medicine, Pocheon CHA University, Pundang CHA General Hospital. The patients were allocated to two groups: one group exclusively for isokinetic maximal voluntary knee flexor training at $150^{\circ}$/sec(n=20) and the other exclusively for isokinetic maximal voluntary knee flexor training from $30^{\circ}$/sec to $150^{\circ}$/sec (n=21) gradually. The allocation was performed according to patient age, sex, affected side to minimize imbalance between the two training groups. Training was carried out from February 14th, 2000 to April 15th, 2000. Analysis of the data was done by means of t-test, x2-test, paired t-test, ANOVA, and multiple regression analysis. The results of this study were as follows: 1. There were no significant differences between the two groups in mean peak torque of knee muscles and relative decreases in knee extensor mean peak torque with increased knee flexor velocities before training (P<.05). 2.There was no significant differences between the two groups in the H/Q ratio, and no relative increases with increased knee flexor velocities before training. 3. there were significant changes in mean peak torque in group A after training(P<.05), but no significant differences as the velocity increased 4.there were significant changes in mean peak torque in group B after training(P<.05), but no significant differences as the velocity increased 5.there were no significant differences between the two groups, and no significant differences in mean peak torque increase rate between the groups with increased knee flexor velocities after training 6.H/Q ratio increased with increased knee flexor velocities between the two groups, but not statistically And there was no significant differences between the groups with increased knee flexor velocities 7.After training, Ambulation time and its decreasing rate decreased significantly in group B (P<.05) 8Before and after training, there was no significant differences between the groups in the fatiguability 9. In the multiple regression analysis, mean peak torque increase rate of the knee extensor and flexor were higher in group B than A(P<.05), and significantly higher with increased knee flexor velocities (P<.05) Also, training method influenced on Ambulation times decreases significantly(P<.05). Results indicated that knee flexor isokinetic training was effective to knee extensor and flexor mean peak torque increase in the hemiplegia able to walk independently for more than 10 meters. Therefore, we were able to conclude that gradual training from low to high velocity was more effective in the increase of mean peak torque of knee joint and decrease of Ambulation times than training only at high velocity.

  • PDF

Parameters Analysis for Influence on the Local Scour around a Pipeline Exposed Waves and Currents (파와 흐름에 노출된 관로 주변부 국부세굴에 영향을 미치는 매개변수)

  • Kim, Kyoung-Ho;Oh, Hyoun-Sik;Kim, Heung-Guk;Son, Kwang-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.128-137
    • /
    • 2012
  • This paper deals with the local scour around a pipeline exposed to combined waves and current in the shallow water zone. To investigate the characteristics of the scour around a pipeline on the sea bed, experiments were performed according to the various pipe diameters, wave periods, wave heights, and current velocities. Wave generator and current generator were used for the experiments. Two current directions were used ; co-direction and counter direction to the waves. With the experimental results, the correlations between the scour depths and non-dimensional parameters such as Keulegan-Carpenter number(KC), Froude number(Fr), Ursell number(Ur) and velocity ratio were analysed. The relative scour depths were found obviously to be dominated by the wave component when the velocity ratio function approaches zero and those are gorverned by the current component when the velocity ratio approaches unity. Velocity ratio function was approved to be a proper parameter which is able to express the change of the scour in the combined wave and current zone. Also considering the orbital velocity and the current velocity into Fr numer and KC number respectively, scour depths show more favorable correlationship with the parameters.

Elastic Wave Velocity of Jumunjin Sand Influenced by Saturation, Void Ratio and Stress (포화도, 간극비 및 응력에 따른 주문진사의 탄성파 속도)

  • Lee, Jung-Hwoon;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The penetration testing provides 1 dimensional profiles of properties applicable to limited investigation areas, although N-value has been linked to a wide range of geotechnical design parameters based on empirical correlations. The nondestructive test using elastic waves is able to produce 2 or 3 dimensional property maps by inversion process with high efficiency in time and cost. As both N-value and elastic wave velocities share common dominant factors that include void ratio, degree of saturation, and in-situ effective stress, the correlation between the two properties has been empirically proposed by previous studies to assess engineering properties. This study presents the experimentally measured elastic wave velocities of Jumunjin sands under at-rest lateral displacement condition with varying the initial void ratio and degree of saturation. Results show that the stress condition predominantly influences the wave velocities whereas void ratio and saturation determine the stress-velocity tendency. The correlation among the dominant factors is proposed by multiple regression analysis with the discussion of relative impacts on parameters.

Numerical Modeling of Vanadia-based Commercial Urea-SCR plus DOC Systems for Heavy-duty Diesel Exhaust Aftertreatment Systems (바나듐 기반의 Urea-SCR과 DOC가 결합된 Heavy-Duty 디젤 배출가스 후처리 시스템의 SCR De-NOx 성능 향상에 관한 수치해석 연구)

  • Yun, Byoung-Kyu;Kim, Chong-Min;Kim, Man-Young;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • In this study, numerical experiments were carried out to estimate the SCR De-NOx performance in DOC plus SCR systems. The SCR De-NOx phenomena are described by Langmuir-Hinshelwood reaction scheme. After validating the present approach by comparing the present results with the experimental results, such various parameters as space velocity, $H_2O$ concentration, $NO_2$/NOx ratio and relative volume of DOC are explored to increase the SCR De-NOx performance. The results indicate that SCR De-NOx performance largely depends on space velocity and $NO_2$/NOx ratio, especially below $200^{\circ}C$. SCR De-NOx performance is seriously affected by relative volume of DOC with SCR due to increasing in $NO_2$/NOx ratio at below $250^{\circ}C$.

A Study of Theoretical Methods for Estimating Void Ratio Based on the Elastic Wave Velocities (탄성파 속도를 이용한 간극비 산출 식의 고찰)

  • Lee, Jong-Sub;Park, Chung-Hwa;Yoon, Sung-Min;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2013
  • The void ratio is an important parameter for reflecting the soil behavior including physical property, compressibility, and relative density. The void ratio can be obtained by laboratory test with extracted soil samples. However, the specimen has a possibility to be easily disturbed due to the stress relief when extracting, vibration during transportation, and error in experimental process. Thus, the theoretical equations have been suggested for obtaing the void ratio based on the elastic wave velocities. The objective of this paper is to verify the accuracy of the proposed analytical solution through the error norm. The paper covers the theoretical methods of Wood, Gassmann and Foti. The elastic wave velocity is determined by the Field Velocity Probe in the southern part of Korean Peninsular. And the rest parameters are assumed based on the reference values. The Gassmann method shows the high reliability on determining the void ratio. The error norm is also analyzed as substitution of every parameter. The results show every equation has various characteristics. Thus, this paper may be widely applied for obtaining the void ratio according to the field condition.

The Properties of the Super Flowing Concrete using manufactured sand (부순모래를 사용한 초류동 콘크리트의 배합특성)

  • 권영호;이상수;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.83-88
    • /
    • 1997
  • In this paper, we described the basic elements (relative flowing area ratio and funeling velocity ratio in mortar, flowability and self-compactibility in concrete, and etc.) required for the maximum mix design of the super flowing concrete (SFC) using manufactured sand. Also, manufactured sand and fly ash were used for investigating characteristics of SFC through various experiments (replacement ratio of manufactured sand, optimum mix condition) before producing the concrete in batch plant. As the result of this project, the SFC using manufactured sand up to 50% showed high flowability and self-compactibility in fresh concrete. Furthermore, its compressive strength is higher than normal concrete without manufactured sand. From now on, this study may suggest how to apply manufactured sand in the SFC.

  • PDF

Chemical Composition of RM_1-390 - Large Magellanic Cloud Red Supergiant

  • Yushchenko, Alexander V.;Jeong, Yeuncheol;Gopka, Vira F.;Vasil'eva, Svetlana V.;Andrievsky, Sergey M.;Yushchenko, Volodymyr O.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature $T_{eff}=4,250{\pm}50K$, the surface gravity ${\log}\;g=0.16{\pm}0.1$, the microturbulent velocity $v_{micro}=2.5km/s$, the macroturbulence velocity $v_{macro}=9km/s$ and the iron abundance $[Fe/H]=-0.73{\pm}0.11$. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.

A Study on Characteristic of Three-Dimensional Flow around the Artificial Upwelling Structures (인공용승구조물 주변 흐름의 3차원 특성에 관한 연구)

  • Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.290-293
    • /
    • 2006
  • From the hydraulic experiment, it was concluded that upwelling could be enhanced when the relative structure height (the ratio of structure height to water depth) was 0.3 and stratification parameter was 3.0. In addition, the optimum size of rubbers was determined that the effect of the mean horizontal length of block was affected incident velocity than size of block. In the numerical experiment, the relation between the shape of rubber and stratification parameter was verified, ana the hydraulic characteristics of 3-D flow field around the artificial structures were investigated. Phenomena of flow field around the artificial upwelling structures corresponded with the results of hydraulic experiment. The position with maximum velocity in artificial upwelling structure was the center of top of its front side and the slip stream occurred at the inside and behind-bottom of artificial upwelling structures. The velocity of slip stream and early amplitude of velocity were higher in the inside than the behind-bottom.

  • PDF