• 제목/요약/키워드: Relative Velocity Method

검색결과 329건 처리시간 0.028초

병진운동용 원통캠기구의 운동해석을 위한 수치해석법 연구 (A Study on Numerical Method for Motion Analysis of Cylindrical Cam with Translate Follower)

  • 김상진;신중호;김대원;박세환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.719-722
    • /
    • 2002
  • Cylindrical cam mechanisms are used commonly in many automatic machinery. But the cylindrical cam is very difficult to design and manufacture the shape. The motion analysis of the cylindrical cam can check the accuracy between designed data and manufactured data of the cam shape and can reproduce without the cam design data. The motion analysis of the cylindrical cam consists of displacement analysis, velocity analysis and acceleration analysis. This paper performs the motion analysis of a cylindrical cam with translating follower by using a relative velocity method and a central difference method. The displacement is calculated by using the central difference method and the velocity is calculated by the relative velocity method. The relative velocity method is defined by the relative motion between follower and cam at a center of a follower roller. The central difference method is derived in the 3 dimensional space.

  • PDF

종동절의 상대속도를 이용한 원반 캠의 형상 설계법에 관한 연구 (A Study on Shape Design Approach of Disk Cams using Relative Velocity of Followers)

  • 신중호;강동우;김종수;김대원
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.185-192
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Since the motion of the cam mechanism depends on the shape of the cam and the type of the follower, the shape design procedure must be well defined in order to determine the accurate shape of the cam corresponding to the prescribed motion of the follower. This paper proposes a new approach for designing the shape of disk cams. The proposed relative velocity method uses the relative velocity at center of the follower roller or at contact point between the cam and the follower for 4 different types of the disk cam systems. Also, the relative velocity method for determining the cam profile uses the geometric relationships of the cam and the follower.

  • PDF

상대속도에 의한 형상설계법과 개선된 변위선도에 의한 연사기용 Traverse Cam의 안정성에 관한 연구 (A Study on Stability for Traverse Cam of Twising Machine using Shape Design Method of Relative Velocity and Modified Displacement Curves)

  • 김종수;윤호업
    • 연구논문집
    • /
    • 통권31호
    • /
    • pp.101-112
    • /
    • 2001
  • A Twisting machine is to twist yarns for improving yarn stiffness. After twisting yarns, the twisting machine is winding yarn at a bobbin. Traverse cam is main part of winding yarn part. In other to improve twisting machine performance and stability, improve traverse cam part. Original displacement curves of traverse cam has two problems. One is that displacement curve has a vertex point the other is that velocity curve is discontinue point. So that, in this paper proposes a modified displacement curves of traverse cam and new shape design method of the traverse cam using the relative velocity method[1]. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationship and the kinematical constraints. Finally, we present to compare two designed cam. One is designed using original displacement curves the other is using modified displacement curve.

  • PDF

상대속도를 이용한 병진운동용 롤러 종동절을 가진 원통캠의 형상설계에 관한 연구 (A Study on Shape Deisgn of Cylindrical Cam with Translating Roller Follower Using Relative Velocity)

  • 윤호업;신중호;김종수;김상진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.639-642
    • /
    • 1997
  • A cylindrical cam with a translation roller follower provides to transfer the translation motion and it s very useful mechanism in the automation. But. it's very difficult that the shape is defined accurately. This paper, proposes a new shape design method of the cylindrical cam with translation roller follower using the relative velocity method[l]. The relativc velocity method lculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematical constraints. Finally, we present an example in order to prove the accuracy of the proposed methods.

  • PDF

상대속도법과 역기구학을 이용한 원통 캠의 가공에 관한 연구 (A Study On the Manufacturing process of Cylindrical Cam based on Relative Velocity Method and Inverse Kinematics)

  • 구병국;신중호;강동우;장세원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.402-405
    • /
    • 1997
  • Based on the relative velocity method and the inverse kinematics theory, this paper presents an automated system for designing and manufacturing of an open type cylindrical cam with a rotating follower(OCRF). In the first part, this paper defines the relative velocity method for OCRF and calculates the contact point by using the coordinate transformation technique. In the second part, it generates NC Code of a CNC machine center for inverse kinematics by using the cutter location and the cutter orientation of OCRF. Finally, the automated CADICAM program developed in the paper shows an example on the desip and manufacture process of OCRF.

  • PDF

상대속도를 이용한 바렐 캠의 설계에 관한 연구 (A Study on Design of Barrel Cam Using Relative Velocity)

  • 신중호;김성원;강동우;윤호업
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.47-54
    • /
    • 2002
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents two examples for the shape design of the barrel cam in order to prove the accuracy of the proposed methods.

직교축상의 회전운동용 롤러 종동절을 수반하는 원통형 캠의 형상설계를 위한 상대속도법에 관한 연구 (A study on relative velocity approach for shape desing to cylindrical cam with rotating roller follower on faced-vertical axes)

  • 김성원;신중호;강동우;장세원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.612-615
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedures must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and the coordinate transformation are used to find a contact point between the cam and the follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the shape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

병진운동용 원형 종동절을 가진 원통캠의 형상설계에 관한 연구 (Study on Shape Design of Cylindrical Cam with A Translating Roller Follower)

  • 윤호업;구병국;신중호
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1324-1330
    • /
    • 2003
  • A cylindrical cam with a translating roller follower provides to change the rotational motion of the cam to the translation motion of the follower. It's a very useful mechanism in the automation. But, it's very difficult that the shape is defined accurately. This paper proposes a shape design method of the cylindrical cam with a translation roller follower using the relative velocity method$\^$(9,11-13)/ : The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematical constraints. Finally, we present examples in order to prove the accuracy of the proposed methods.

상대속도를 이용한 자동공구교환장치용 원통 캠의 형상 설계에 관한 연구 (A Study on Shape Design Approach of Cylindrical Cam for Automatic Tool Changer Using Relative Velocity)

  • 김성원;신중호;강동우;장세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.813-817
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedure must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and coordinate transformation are used to find a contact point between cam and follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the sape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

Design of Traverse earn for Yarn Winding on Twisting Machine

  • Kim Jong-Soo;Yoon Ho-Eop;Kim Dae-Won
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.151-155
    • /
    • 2005
  • A twisting machine is to twist yarns for improving yam strength. After twisting yams, the twisting machine winds yams into a bobbin. The traverse mechanism is very important part of winding mechanism. Because it performs uniform winding onto the bobbin. the traverse cam is the main part of the traverse mechanism. This paper proposes design method of the traverse cam using the relative velocity method [4,5]. The relative velocity method is used to calculate the relative velocity of the follower versus the cam at the center of roller, and then to determine the contact point using the geometric relationship and kinematical constraints. Finally, we present examples verifying the accuracy of the proposed methods.