• Title/Summary/Keyword: Relative Velocity

Search Result 1,066, Processing Time 0.027 seconds

A study on relative velocity approach for shape desing to cylindrical cam with rotating roller follower on faced-vertical axes (직교축상의 회전운동용 롤러 종동절을 수반하는 원통형 캠의 형상설계를 위한 상대속도법에 관한 연구)

  • 김성원;신중호;강동우;장세원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.612-615
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedures must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and the coordinate transformation are used to find a contact point between the cam and the follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the shape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

A Study On the Manufacturing process of Cylindrical Cam based on Relative Velocity Method and Inverse Kinematics (상대속도법과 역기구학을 이용한 원통 캠의 가공에 관한 연구)

  • 구병국;신중호;강동우;장세원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.402-405
    • /
    • 1997
  • Based on the relative velocity method and the inverse kinematics theory, this paper presents an automated system for designing and manufacturing of an open type cylindrical cam with a rotating follower(OCRF). In the first part, this paper defines the relative velocity method for OCRF and calculates the contact point by using the coordinate transformation technique. In the second part, it generates NC Code of a CNC machine center for inverse kinematics by using the cutter location and the cutter orientation of OCRF. Finally, the automated CADICAM program developed in the paper shows an example on the desip and manufacture process of OCRF.

  • PDF

Study on Shape Design of Cylindrical Cam with A Translating Roller Follower (병진운동용 원형 종동절을 가진 원통캠의 형상설계에 관한 연구)

  • Yoon, Ho-Eop;Shin, Joong-Ho;Gu, Byong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1324-1330
    • /
    • 2003
  • A cylindrical cam with a translating roller follower provides to change the rotational motion of the cam to the translation motion of the follower. It's a very useful mechanism in the automation. But, it's very difficult that the shape is defined accurately. This paper proposes a shape design method of the cylindrical cam with a translation roller follower using the relative velocity method$\^$(9,11-13)/ : The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematical constraints. Finally, we present examples in order to prove the accuracy of the proposed methods.

A Study on Shape Design Approach of Cylindrical Cam for Automatic Tool Changer Using Relative Velocity (상대속도를 이용한 자동공구교환장치용 원통 캠의 형상 설계에 관한 연구)

  • Kim, S.W.;Shin, J.H.;Kang, D.W.;Chang, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.813-817
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedure must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and coordinate transformation are used to find a contact point between cam and follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the sape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

Design of Traverse earn for Yarn Winding on Twisting Machine

  • Kim Jong-Soo;Yoon Ho-Eop;Kim Dae-Won
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.151-155
    • /
    • 2005
  • A twisting machine is to twist yarns for improving yam strength. After twisting yams, the twisting machine winds yams into a bobbin. The traverse mechanism is very important part of winding mechanism. Because it performs uniform winding onto the bobbin. the traverse cam is the main part of the traverse mechanism. This paper proposes design method of the traverse cam using the relative velocity method [4,5]. The relative velocity method is used to calculate the relative velocity of the follower versus the cam at the center of roller, and then to determine the contact point using the geometric relationship and kinematical constraints. Finally, we present examples verifying the accuracy of the proposed methods.

Effects of environmental flow velocity on the evaporation of free droplets (자유액적의 증발에 미치는 분위기 속도의 영향)

  • Jeong, Seong-Sik;Ha, Jong-Ryul;Lee, Jung-Sun;Lee, Sang-Seok;Kawaguchi, O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2036-2045
    • /
    • 1996
  • An experimental study has been performed to obtain the effect of relative velocity between droplet and environmental gas on the evaporation of a n-heptane free droplet of 180 $\mu$m in diameter flying in a hot and normal pressure air flow. Measurement of droplet diameter and velocity was conducted in a series of time by an electrically controlled optical system. From the experimental results, an empirical equation associated with the relation between evaporation rate constant and relative velocity was obtained.

Forming Simulation of Extru-Bending Process Using Multi-Billets (멀티빌렛을 사용한 압출굽힘가공의 성형 해석)

  • Park D. Y.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.120-123
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets inside die chamber after passing the multi-hole container. The curvature can be controlled by the two variables, the one of them is the different velocity of billets through the multi-hole container, the other is the difference of hole diameter. The bending phenomenon during extruding using four billets can be obtained by the difference of hole diameters in the multi-hole container or by the difference of relative velocity of billet inserted in the container. As results of DEFORM-3D analysis, it can be shown that bending can be obtained during extruding by the difference of relative velocity of two billets or by the difference of hole diameter, and the amount of curvature is increased by the difference of velocity and diameter. According to the shape of products, the curvature of rectangular section is bigger than the curvature of regular square section. And, it is estimated that, because the stress on the welding line is much higher than yield stress of material, the bonding of four billets can be obtained.

  • PDF

An Experimental Analysis for the Stability Investigation of Slope on Saemangeum Lake Dykes (새만금 방수제 축조사면의 안정성 검토를 위한 실험적 분석)

  • Jang, Dong-Gi;Kim, Ki-Nyun;Kim, Dong-Hwan;Seo, Kwan-Seok;Son, Moon-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.687-697
    • /
    • 2010
  • This study was designed to carry out studies on critical seepage velocity and critical hydraulic gradient using a piping test targeting SM and ML which are widely distributed ahead of and behind the depth of E.L(-)10m in Saemangeum area in order to examine stability of embankment built on the ground vulnerable to piping. The effects of relative densities on critical hydraulic gradient and critical velocity were also compared and analyzed using empirical formula and theoretical formula, and relative densities were set up as respectively 9%, 25%, 50%, and 75% for this experiment. As a result, for critical hydraulic gradient, most of specimens detected piping at lower values than the empirical formula of Terzaghi(1922). It is, therefore, considered that the empirical formula devised by Kalin(1977) or Hayashi(1978) is more reasonable to be conservative. It was also found that critical velocity decreased as relative density increased, and critical velocity predicted was mostly lower than the theoretical formula.

  • PDF

MRR model for the CMP Process Considering Relative Velocity (상대속도를 고려한 CMP 공정에서의 연마제거율 모델)

  • 김기현;오수익;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) process becomes one of the most important semiconductor processes. But the basic mechanism of CMP still does not established. Slurry fluid dynamics that there is a slurry film between a wafer and a pad and contact mechanics that a wafer and a pad contact directly are the two main studies for CMP. This paper based on the latter one, especially on the abrasion wear model. Material Removal Rate(MRR) is calculated using the trajectory length of every point on a wafer during the process time. Both the rotational velocity of a wafer and a pad and the wafer oscillation velocity which has omitted in other studies are considered. For the purpose of the verification of our simulation, we used the experimental results of S.H.Li et al. The simulation results show that the tendency of the calculated MRR using the relative velocity is very similar to the experimental results and that the oscillation effect on MRR at a real CMP condition is lower than 1.5%, which is higher than the relative velocity effect of wafer, and that the velocity factor. not the velocity itself, should be taken into consideration in the CMP wear model.

Effects of Relative Humidity on the Evaporator Pressure Drop (증발기의 압력강하에 대한 상대습도의 영향)

  • 김창덕;강신형;박일환;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.