• 제목/요약/키워드: Relative Thickness Ratio

Search Result 157, Processing Time 0.027 seconds

Rotational capacity of H-shaped steel beams under cyclic pure bending

  • Jia, Liang-Jiu;Tian, Yafeng;Zhao, Xianzhong;Tian, Siyuan
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.123-140
    • /
    • 2019
  • This paper presents experimental study on effects of width-to-thickness ratio and loading history on cyclic rotational capacity of H-shaped steel beams subjected to pure bending. Eight Class 3 and 4 H-shaped beams with large width-to-thickness ratios were tested under four different loading histories. The coupling effect of local buckling and cracking on cyclic rotational capacity of the specimens was investigated. It was found that loss of the load-carrying capacity was mainly induced by local buckling, and ductile cracking was a secondary factor. The width-to-thickness ratio plays a dominant effect on the cyclic rotational capacity, and the loading history also plays an important role. The cyclic rotational capacity can decrease significantly due to premature elasto-plastic local buckling induced by a number of preceding plastic reversals with relative small strain amplitudes. This result is mainly correlated with the decreasing tangent modulus of the structural steel under cyclic plastic loading. In addition, a theoretical approach to evaluate the cyclic rotational capacity of H-shaped beams with different width-to-thickness ratios was also proposed, which compares well with the experimental results.

Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particl Flow in a Pipe(II) - Mechanism of Heat Transfer- (고체 분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용 (II) - 열전달 기구 -)

  • 한기수;정명균;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.214-224
    • /
    • 1990
  • A "two-fluid" model using thermal eddy diffusivity concept and Lumley's drag reduction theory, is proposed to analyze heat transfer of the turbulent dilute gas-particle flow in a vertical pipe with constant wall heat flux. The thermal eddy diffusivity is derived to be a function of the ratio of the heat capacity-density products .rho. over bar $C_{p}$ of the gaseous phase and the particulate phase and also of the ratio of thermal relaxation time scale to that of turbulence. The Lumley's theory dictates the variation of the viscous sublayer thickness depending on the particle loading ratio Z and the relative particle size $d_{p}$/D. At low loading ratio, the size of viscous sublayer thickness is important for suspension heat transfer, while at higher loading, the effect of the ratio .rho. $_{p}$ over bar $C_{p}$$_{p}$/ .rho. $_{f}$ over bar $C_{p}$$_{f}$ is dominant. The major cause of decrease in the suspension Nusselt number at lower loading ratio is found to be due to the increase of the viscous sublayer thickness caused by the suppression of turbulence near the wall by the presence of solid particles. Predicted Nusselt numbers using the present model are in satisfactory agreements with available experimental data both in pipe entrance and the fully developed regions.

Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors (초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF

Variation of Welded-Joint Tensile Strength of GMA Welded Accelerated-Cooled Steel (가속냉각강 GMAW 용접이음부의 강도 변화)

  • 방국숙;정성욱
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.83-88
    • /
    • 2000
  • Variation of welded-joint hardness and tensile strength of a accelerated-cooled fine-grained ferritic-pearlitic steel with heat input was investigated. In a weld heat-affected zone, a softened zone was formed and it had lower hardness than that of a base metal. While the width of a softened zone increased continuously with an increase of heat input up to 100kJ/cm. the minimum hardness in a softned zone was almost constant after a continuos decrease up to 60KJ/cm. Because of a softened zone, the welded-joint was fractured in the HAZ and its maximum reduction of tensile strength was about 20%. Measured welded-joint tensile strength and calculated minimum tensile strength in a welded-joint was almost same, which means that the plastic restraint of a softened zone did not occur in this experiment. It is believed that as a softened zone width-to-specimen thickness ratio is as high as 2~6 in this experiment, the plastic restraint effect does not occur. Theoretical analysis shows that the plastic restraint effect occurs only when the ratio is below 0.5.

  • PDF

Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube

  • Yin, Xiaowei;Lu, Xilin
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • According to the results of 9 circular concrete filled steel tube (CFT) push-out tests, a new theoretical model for average bond stress versus free end slip curve is proposed. The relationship between verage bond stress and free end slip is obtained considering some varying influential parameters such as slenderness ratio and diameter-to-thickness ratio. Based on measured steel tube strain and relative slip at different longitudinal positions, the distribution of bond stress and relative slip along the length of steel tube is obtained. An equation for predicting the varying bond-slip relationship along longitudinal length and a position function reflecting the variation are proposed. The presented method can be used in the application of finite element method to analyze the behavior of CFT structures.

Influence of Design Variables on Failure Loads of Sandwich Beam (설계변수에 대한 샌드위치 보의 파손하중)

  • Jongman Kim
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • Sandwich structures have been widely used in the applications of vessel industry, where high structural stiffness is required with small addition of weight. It is so significant to think of the effect of the variables in the design process of the sandwich structure for the concentrated loads. This paper describes the influence of design variables, such as core density, core thickness and face thickness ratio, on the strength of sandwich beam. The theoretical failure loads based on the 2-D elasticity theory agree well with the experimental yield or failure loads, which are measured at the three point bending laboratory test using AS4/3501-6 facing and polyurethane foam core sandwich beam. The comparison of those yield or failure loads was also done with the ratio of the top to bottom face thickness. The theoretical optimum condition is obtained by finding the intersection point of failure modes involved, which gives optimum core density of the sandwich beam for strength and stiffness. In the addition, the effect of unequal face thickness for the optimized and off-optimized sandwich beams for the strength was compared with the ratio of loading length to beam length, and the variations of strength and stiffness were discussed with the relative ratio of core to face mass.

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.

A Study of Hyperlipidemia in Koreans -I. Specially Related to physical Characteristics and It's Risk Factors for Hypercholesterolemia- (한국인의 고지혈증에 관한 연구 -I. 고콜레스테롤혈증 소견자의 신체 특성과 그 위험인자를 중심으로-)

  • 허영란
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.3
    • /
    • pp.279-289
    • /
    • 1999
  • This study was conducted to investigate the physical characteristics and risk factors for hyperchol-esterolemia (HC) in Korean. 344 adult men who took the annual health check-ups at D or J hospitals were participated in this cross-sectional study. The subjects were grouped by plasma total cholesterol level in to three groups: normal cholesterolemic (n=139) borderline hypercholesterolemic(n=93) and hypercholesterolemic (n=112) groups. The data of height weight and plasma cholesterol level were col-lected from medical records. Body circumferences(midarm, waist, hip, and thight) skinfold thicknesses (biceps, triceps, subcostal, abdomen, and suprailic), and body composition (fat mass and fat free mass) were measured. Body mass index (BMI) height/weight ratio (HWR) waist/hip circumference ratio (WHR) waist/ thigh circumference ratio (WTR) central skinfold thickenss (CSF) and peripheral skin-fold thickness were calculated. The subjects with HC had significantly higher weight BMI waist cir-cumference skinfold thickness and body fat mass than those of the normal subjects. The relative and attributable risks on HC were 1.61 and 0.17 for obesity (BMI$\geq$25) 1,30 and 0.11 for upper body obesity (WTR$\geq$1.30) and 1.54 and 0.18 for central body obesity (CSF$\geq$95.7). Plasma total cholesterol level was positively correlated with several antropometric parameters: BMI (p<0.001) weight(p<0.001) waist circumference(p<0.001) and skinfold thickness of abdomen (p<0.001) spraillic (p<0.01) triceps(p<0.01) subcostal (p<0.01) and biceps (p<0.05) In conclusion the major influencing factors to plasma cholesterol level was BMI. Among the each physical parameters the circumference of waist the skinfol-d thickness of abdomen and the percentage of body fat were closely related to plasma cholesterol level. The important risk factor for hypercholesterolemia was obesity specially upper body obesity and central body obesity.

  • PDF

Development of the EM Wave Absorber for ETC of ITS (ITS의 ETC용 전파흡수체 개발)

  • Song, Young-Man;Choi, Chang-Mook;Lee, Dae-Hee;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.671-674
    • /
    • 2007
  • In this paper, the EM wave absorber was designed and fabricated for ETC system, because ETC system has some problems including signal error and system-to-system interference. We fabricated some samples in different composition ratio of MnZn-ferrite, Carbon and CPE, confirmed that optimum composition ratio of Mn2n-ferrite, Carbon, CPE was 40 : 15 : 45 wt%. Complex relative permittivity and complex relative permeability was calculated by the measured data. And absorption abilities were simulated according to different thickness of the EM wave absorbers using complex relative permittivity and permeability. The EM wave absorber was fabricated based on simulated data Simulated and measured values agree well. As a result, the developed EM wave absorber has a thickness of 3.38 mm and absorption ability over 20 dB at 5.8 GHz.

The Effect of the Gas Ration on the Characteristics of Plasma Nitrided SCM440 Steel (SCM440강의 플라즈마 질화특성에 미치는 가스비율의 영향)

  • 김무길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.712-720
    • /
    • 1998
  • The effect of H2:N2 gas ratio on the case thickness hardness and nitrides formation in the sur-face of SCM440 machine structural steel have been studied by micro-pulse plasma process. The thickness of compound layer increased with the increase of nitrogen content in the gas com-position. The maximum thickness of compound layer the maximum case depth and the maximum surface hardness were about 15.8${\mu}m$, 400${\mu}m$ and Hv765 respectively in the nitriding condition of 250Pa and 70% nitrogen content at $520^{\circ}C$ for 7hrs. Generally only nitride phases such as ${\'{\gamma}}$($Fe_4N$)$\varepsilon(Fe_2}{_3N}$ phases were detected in compound and diffusion layer by XRD analysis. The amount of $\varepsilon(Fe_2}{_3N}$ phase increased with the increase of nitrogen content. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitrogen content in the gas composition.

  • PDF