• 제목/요약/키워드: Relative Deformation

검색결과 451건 처리시간 0.029초

흙입자 강도와 압축특성을 이용한 모래의 파쇄성 지표 (A Crushability Index of Sands Using Particle Strengths and Compressibility Characteristics)

  • 곽정민
    • 한국지반공학회논문집
    • /
    • 제15권5호
    • /
    • pp.205-215
    • /
    • 1999
  • 파쇄성 사질토 지반은 세계각지의 해안을 중심으로 넓게 분포되어 있고, 칼슘성분을 다량 함유한 석회질 모래지반은 입자파쇄의 영향으로 높은 압축성을 나타내는 특징이 있다. 본 연구에서는 모래의 강도-변형특성에 관여하는 입자파쇄의 특성을 명백히 하기 위하여, 세가지 종류의 카보네이트계 모래와 실리카계의 모래를 이용하여 광범위한 응력영역에 대한 등방압축시험을 실시하였다. 다양한 상대밀도에 대한 등방압축 조건에서 압축 항복응력과 입자 파쇄응력과의 관계로부터 파쇄성지표 K를 제안하였다. 제안된 파쇄성지표 K는 흙입자 강도와도 밀접한 관계를 가지며, 흙의 파쇄성을 평가하기 위한 중요한 인자로 사료된다.

  • PDF

지하식 저장탱크 Corbel부 실험적 거동 분석 (Experimental Analysis of Corbel Part Behaviour in Inground LNG Storage Tank)

  • 윤인수;김정규;김영균;김지훈
    • 한국가스학회지
    • /
    • 제10권1호
    • /
    • pp.56-60
    • /
    • 2006
  • 지하식 LNG 저장탱크의 Bottom Slab와 Side Wall의 연결부(코벨)는 응력집중을 완화하기 위하여 앵커바를 사용하여 부분적으로 고정되는 힌지 조건을 갖는다. 그러므로 LNG저장탱크 하중 조건인 LNG온도, 지하수압 등에 의해 방사 방향과 수직 방향으로 변형된다. 멤브레인 설계 관점에도 이러한 변형값이 직접 전달되어 중첩되므로 중요한 부분이다. 본 논문에서는 코벨부의 실제 거동을 조사하기 위하여 센서를 설치하여 온도, 하중 그리고 변위를 측정하였다. 또한 FEM 해석으로 예측한 하중조건에 대한 설계 값과 비교하여 합리적인 설계를 제시하고자 하였다.

  • PDF

An Experimental Study of Nonlinear Viscoelastic Bushing Model for Axial Mode

  • Lee, Seong-Beom;Shin, Jung-Woog;Alan S. Wineman
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1324-1331
    • /
    • 2003
  • A bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is essentially a hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. The shaft is connected to the suspension and the sleeve is connected to the frame. The cylinder provides the cushion when it deforms due to relative motion between the shaft and sleeve. The relation between the force applied to the shaft or sleeve and its deformation is nonlinear and exhibits features of viscoelasticity. An explicit force-displacement relation has been introduced for multi-body dynamics simulations. The relation is expressed in terms of a force relaxation function and a method of determination by experiments on bushings has been developed. Solutions allow for comparison between the force-displacement behavior by experiments and that predicted by the proposed method. It is shown that the predictions by the proposed force-displacement relation are in very good agreement with the experimental results.

탄소강 선재 압연공정의 DCI 롤 마멸 예측 기술의 개발 (Development of Technique Predicting of the Wear of DCI Roll Using Carbon Steel in Hot Rod Rolling Process)

  • 김동환;김병민;이영석;유선준;주웅용
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1736-1745
    • /
    • 2002
  • The objective of this study is to predict the roll wear in hot rod rolling process. In this study hot rod rolling process for round and oval passes has been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the thermal softening of DCI (Ductile Cast Iron) roll according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering parameter curve. 3D wear program developed in this study might be used for adjusting the gap of rolls to set up a suitable rolling schedule for keeping dimensional tolerance of the product.

일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구 (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode)

  • 이성범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.415-419
    • /
    • 2003
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation for elastomeric bushing is important for dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data for the elastomeric bushing material was obtained and this data was used to derive the new load-displacement for radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

  • PDF

열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정 (Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process)

  • 김동환;김병민;이영석;유선준;주웅용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF

Performance-based plastic design for seismic rehabilitation of high rise frames with eccentric bracing and vertical link

  • Karimi, Rouhina;Rahimi, Sepideh
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.623-633
    • /
    • 2019
  • A large number of available concrete buildings designed only considering gravity load that require seismic rehabilitation because of failure to meet plasticity criteria. Using steel bracings are a common type of seismic rehabilitation. The eccentric bracings with vertical link reduce non-elastic deformation imposed on concrete members as well as elimination of probable buckling problems of bracings. In this study, three concrete frames of 10, 15, and 20 stories designed only for gravity load have been considered for seismic improvement using performance-based plastic design. Afterwards, nonlinear time series analysis was employed to evaluate seismic behavior of the models in two modes including before and after rehabilitation. The results revealed that shear link can yield desirable performance with the least time, cost and number of bracings of concrete frames. Also, it was found that the seismic rehabilitation can reduce maximum relative displacement in the middle stories about 40 to 80 percent. Generally, findings of this study demonstrated that the eccentric bracing with vertical link can be employed as a suitable proxy to achieve better seismic performance for existing high rise concrete frames.

Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer

  • Heydari, Abbas
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.397-416
    • /
    • 2020
  • Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.

지중매설관로의 거동특성 해석을 위한 관.지반 상호작용력의 산정 (Estimation of Pipeline.Soil Interaction Force for the Response Analysis of Buried Pipeline)

  • 김태욱;임윤묵;김문겸
    • 한국지진공학회논문집
    • /
    • 제7권3호
    • /
    • pp.57-67
    • /
    • 2003
  • Response analysis of buried pipeline subjected to permanent ground deformation(PGD) due to liquefaction is mainly executed by use of numerical analysis or semi-analytical relationship, When applying these methods, so called interfacial pipelineㆍsoil interaction force plays an dominant part. Currently used interaction force is mode up of indispensable mechanical and physical components for the response analysis of buried pipeline. However, it has somewhat limited applicability to the liquefied region since it is based on the experimental results for the non-liquefied region. Therefore, in this study, improved type of pipelineㆍsoil interaction force is proposed based on the existing interaction force and experimental research accomplishments. Above all, proposed interaction force includes various patterns of PGD or spatial distributions of interaction force caused by the decrease of soil stiffness. Through the comparison of numerical results using the proposed and the existing interaction force, relative influences of interaction force on the response of pipeline are evaluated and noticeable considerations in the application of semi-analytical relationship are discussed. Moreover, analyses due to the change of pipe thickness and burial depth are performed.

교량상 slab궤도의 상향력 민감도분석 (Parameteric Analysis for Up-lifting force on Slab track of Bridge)

  • 최성기;박대근;한상윤;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF