• Title/Summary/Keyword: Relative Deformation

Search Result 450, Processing Time 0.025 seconds

Deformation Characteristics of Flexible Pipe with Variation of Buried Conditions (매설조건에 따른 연성관의 변형특성)

  • Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, the pipe type that has been well used as sewage pipe from the past is primarily a rigid pipe which is represented by concrete hume pipe, but the use of it is being decreased sharply because of the problems such as tube erosion and incomplete watertightness securing through the time. On the other hand, the use of flexible pipe has been increased because its construction ability is excellent on account of its light weight as well as it is resistant to corrosion. However, because there are lacks of market's confidence in flexible pipe and occurrence cases of partial damage incomplete caused by compaction control, cause analysis and management for them are needed. Therefore, this study tried to estimate the deformation characteristics of pipe caused by each condition through numerical analysis changing construction sequence, rigidity of pipe, strength of ground concrete under the pipe, relative compaction ratio of sand foundation under the pipe and relative compaction ratio of backfill material above the pipe. Evaluation result is that influence on each factor is confirmed and the quality control of sand around the pipe are turned up to be important.

Formulation of Mass Conservation and Linear Momentum Conservation for Saturated Porous Media in Arbitrary Lagrangian Eulerian(ALE) Description (포화된 다공질 매체의 질량 보존과 운동량 보존에 대한 Arbitrary Lagrangian Eulerian(ALE) 정식화)

  • Park, Tae-Hyo;Jung, So-Chan;Kim, Won-Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 2003
  • The solids and the fluids in porous media have a relative velocity to each other. Due to physically and chemically different material properties and their relative velocity, the behavior of saturated porous media is extremely complicated. Thus, in order to describe and clarify the deformation behavior of saturated porous media, constitutive models for deformation of porous media coupling several effects need to be developed in frame of Arbitrary Lagrangian Eulerian(ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian elements, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media which are considered for the behavior of the solids and the fluids. For this reason, mass balance equations for saturated porous media are derived here in ALE description frames. ALE formulations of mass conservation for the solid phase and the fluid phase are expressed. Then, linear momentum balance equation for porous media as multiphase media is expressed.

  • PDF

Response Analysis of Buried Pipeline Subjected to Longitudinal Permanent Ground Deformation (종방향 영구지반변형에 대한 지중 매설관로의 거동특성 해석)

  • 김문겸;임윤묵;김태욱;박종헌
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.51-61
    • /
    • 2002
  • In this research, a numerical algorithm is developed for the response analysis of burined pipelines considering longitudinal permanent ground deformation(PGD) due to liquefaction induced lateral spreading. Buried pipelines and surrounding soil are modeled as continuous pipelines using the beam elements and a series of elasto-plastic springs represented for equivalent soil stiffness, respectively. Idealized various PGD patterns based on the observation of PGD are used as a loading configuration and the length of the lateral spread zone is considered as loading parameter. Numerical results are verified with other research results and efficient applicability of developed procedure is shown. Analyses are performed by varying different parameters such as PGD pattern, pipe diameter and pipe thickness. Through these procedures, relative influences of various parameters on the response of buried pipeline subject to longitudinal PGD are investigated.

Microfabrics of omphacite and garnet in eclogite from the Lanterman Range, northern Victoria Land, Antarctica

  • Kim, Daeyeong;Kim, Taehwan;Lee, Jeongmin;Kim, Yoonsup;Kim, Hyeoncheol;Lee, Jong Ik
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.939-953
    • /
    • 2018
  • We examined the microfabrics of omphacite and garnet in foliated eclogite to determine the influence of the layered structure on seismic observations in subduction zone. The analyzed eclogite, from the Lanterman Range, northern Victoria Land, Antarctica, is characterized by layering in which the modal abundances of garnet and omphacite vary. For garnet, the low aspect ratios, similar angular distribution of long axes relative to the foliation in both layers, uniform grain size distribution, near-random crystallographic preferred orientations (CPOs), and misorientation angle distributions are indicative of passive behavior during deformation. In contrast, omphacite shows relatively high aspect ratios, a low angle between the long axes of crystals and the foliation, a wide grain-size distribution, and distinctive CPOs, suggesting dislocation creep as the main deformation mechanism. The results of fabric analyses are consistent with strain localization into omphacite or omphacite-rich layers rather than garnet or garnet-rich layers. The single-crystal seismic anisotropy of garnet is very weak ($AV_P=0.2%$, $AV_S=0.5-0.6%$), whereas that of omphacite is much stronger ($AV_P=3.7-5.9%$ and $AV_S=2.9-3.8%$). Seismic anisotropy of the omphacite-rich layers shows an increase of 329% for $AV_P$ and 146% for $AV_S$ relative to the garnet-rich layers. Our results demonstrate the importance of the layered structure in strain localization and in the development of the seismic anisotropies of subducting oceanic crust.

Relation between Cone Tip Resistance and Deformation Modulus of Cemented Sand (고결모래의 콘선단저항과 변형계수의 관계)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.53-63
    • /
    • 2008
  • In this study, the cone tip resistances of cemented sand are measured by performing a series of miniature cone penetration tests in large calibration chamber, and the relations with constrained modulus, unconfined compressive strength, and shear strength of cemented sand are suggested. Experimental results show that both the cone tip resistance and constrained modulus of sand increase with increasing cementation effect as well as relative density and confining stress. However, it is observed that the relative density and confining stress have more significant influence on cone tip resistance than constrained modulus of cemented sand. Since the cone penetration into the ground induces the damage of cementation, the cone tip resistance can't properly reflect the cementation effect of sand. An analysis based on the constrained modulus shows that the measured cone tip resistance underestimates the deformation modulus of cemented sand by about $70{\sim}85%$. In addition, this study establishes various relationships among the above soil properties from the regression analysis.

Inspection of the Nuclear Fuel Rod Deformation using an Image Processing (영상처리를 이용한 핵연료봉의 변형 검사)

  • Cho, Jai-Wan;Choi, Young-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.91-96
    • /
    • 2010
  • In this paper, a deformation measurement technology of the nuclear fuel rod is proposed. The deformation measurement system include high definition CCD or CMOS image sensor, lens, semiconductor laser line beam marker, and optical & mechanical accessories. The basic idea of the deformation measurement is to illuminate the outer surface of the fuel rod with collimated laser line beam at an angle of 45 degrees or higher. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of laser line beam position in the surface of the fuel rod is imaged as the parabolic beam in the high definition CCD or CMOS image sensor. From the parabolic beam pattern, the ellipse model is extracted. And the slope of the long and the short axis of the ellipse model is found. The crossing point between the saddle point of the parabolic beam and the long & short axis of the ellipse model is taken as the feature of the deformed fuel rod. The vertical offset between feature points before and after fuel rod deformation is calculated. From the experimental results, $50\;{\mu}m$ inspection resolution is acquired using the proposed method, which is three times enhanced than the conventional criterion ($150\;{\mu}m$) of the guide for the inspection of the nuclear fuel rod.

Earthquake Response Analysis of a Buried Gas Pipeline (매설가스배관의 지진응답해석)

  • Lee, Do-Hyung;Cho, Kyu-Sang;Chung, Tae-Young;Kong, Jung-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.41-52
    • /
    • 2007
  • Earthquake time-history analyses have been carried out for a buried gas pipeline of X65 which is of popular use in Korea. Parameters included are shape of a buried gas pipeline, soil characteristics, single and multiple earthquake input ground motions and burial depths. Predicted response of strain and relative displacement are then compared with allowable strain and displacement capacity calculated by Guidelines for the Seismic Design of Buried Gas Pipelines, KOGAS. Comparative studies show that strains are in general affected by the burial depths together with change of soil conditions. Regarding the relative displacement, while axial relative displacement is not influenced by the burial depths, transverse relative displacement is affected by both burial depths as well as soil conditions. In all, the current study is encouraged to give a useful information for healthy earthquake evaluation of a buried pipeline.

Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles

  • Soomro, Mukhtiar Ali;Mangi, Naeem;Memon, Aftab Hameed;Mangnejo, Dildar Ali
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.25-40
    • /
    • 2022
  • In this study, 3D coupled-consolidation numerical parametric study was conducted to predict the deformation mechanism of a 20 storey building sitting on (4×4) piled raft (with length of piles, Lp=30 m) to adjacent 6 m diameter (D) tunnelling in stiff clay. The influences of different tunnel locations relative to piles (i.e., zt/Lp) were investigated in this parametric study. In first case, the tunnel was excavated near the pile shafts with depth of tunnel axis (zt) of 9 m (i.e., zt/Lp). In second and third cases, tunnels were driven at zt of 30 m and 42 m (i.e., zt/Lp = 1.0 and 1.4), respectively. An advanced hypoplastic clay model (which is capable of taking small-strain stiffness in account) was adopted to capture soil behaviour. The computed results revealed that tunnelling activity adjacent to a building resting on piled raft caused significant settlement, differential settlement, lateral deflection, angular distortion in the building. In addition, substantial bending moment, shear forces and changes in axial load distribution along pile length were induced. The findings from the parametric study revealed that the building and pile responses significantly influenced by tunnel location relative to pile.

Relationship between Side-Necking and Plastic Zone Size at Fracture (파괴 시 발생하는 측면함몰과 소성영역크기와의 관계)

  • Kim, Do-Hyung;Kim, Dong-Hak;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.365-371
    • /
    • 2004
  • Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixities $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$ and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed.

  • PDF

A Study on the Backward Extrusion of Internal Spline (내부 스플라인의 후방압출에 관한 연구)

  • Cho, YongIl;Choi, JongUng;Qiu, Yuangen;Cho, Heayong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.15-23
    • /
    • 2020
  • Spline is a machine component using transmits rotating energy with grooves on internal of boss and external periphery of shaft. Internal spline is generally produced by machining process. However, to reduce manufacturing cost and save time, plastic deformation process such as backward extrusion is gradually adapted for spline production. In plastic deformation process, forming load, stress on tools and flow flaws should be taken into account to have sound products. For this purpose, kinematically admissible velocity fields for Upper Bound Method in backward extrusion of internal spline has been suggested, then forming load and relative pressure have been calculated. Internal spline forming experiments have been con-ucted under hydraulic press and the calculated forming load well predicts the load of experiment.