• Title/Summary/Keyword: Relationship between indoor and outdoor air

Search Result 24, Processing Time 0.022 seconds

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

CHLOROFORM IN THE AIR OF INDOOR SWIMMING POOLS AND THE OUTDOOR AIR NEAR THE SWIMMING POOLS IN A CITY OF KOREA (국내 한 도시의 실내 수영장 공기 및 수영장 인근의 실외 공기에서의 클로로포름)

  • 조완근;황영미
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.253-261
    • /
    • 1994
  • Chloroform present in the swimming water disinfected with sodium hypochlorite is released to the air of swimming pools. The air chloroform concentrations were measured in two swimming pools A and B which applied both sodium hypochlorite a:d ozone. Thew mean concentrations are 28.0 $\mu\textrm{g}$/m3 and 33.6 $\mu\textrm{g}$/m3in the swimming pools A and B, respectively. On the other hand, the mean water chloroform concentrations in the swimming pools A and B were 23.9 $\mu\textrm{g}$/l and 19.5 $\mu\textrm{g}$/l, respectively. The air chloroform concentrations were lower in the swimming Bools A and B than those reported by previous studies abroad employed the swimming pools which applied sodium hypochlorite only for water disinfection. The water chloroform concentrations were also lower in this study than in the previous studies. The relationship between the air and water chloroform concentrations measured in this study was significant with p=0.002 and Rz=0.42. At similar time to the indoor air sampling, outdoor air samples were collected at two sites near each of the swimming Pools A and B. The mean outdoor air chloroform concentrations near the swiminE Pools A and B were 0.41 $\mu\textrm{g}$/m3 and 0.16 $\mu\textrm{g}$/m3, respectively. The outdoor air chloroform concentrations measured in this study were equal to or lower than those reported by previous studies abroad. 'rho chloroform dose inhaled for a typical one-hour swim was estimated to be 25.9 $\mu\textrm{g}$ per person, corresponding to a specific 0.37 $\mu\textrm{g}$/kg body weight for a reference 70 Kg male adult, while the inhalation dose of chloroform from the outdoor air was estimated to be 5.6 $\mu\textrm{g}$ per person per day, corresponding to a specific 0.08 $\mu\textrm{g}$/Kg/day for the same reference male adult.

  • PDF

Comparison of VOCs Concentration Characteristic According to Measurement Methods in Exhibition Hall (휘발성유기화합물(VOCs)의 측정방법에 따른 유물 전시관 내 농도 분포 특성 비교)

  • Lim, BoA;Lee, Sun Myung
    • 보존과학연구
    • /
    • s.35
    • /
    • pp.25-44
    • /
    • 2014
  • In this study, measured annual year and seasonal concentrations of VOCs by Active type and Passive type using the measurement and analysis method in the exhibition hall and outdoor. It was compared with the correlation between the methods according the comparison of methods to measured concentrations. As a results, the annual average concentrations of TVOC in exhibition room($906.5{\mu}g/m^3$) was greater than for most of the study period, more than 1.8 times the standard in the Ministry of Environment. ${\Sigma}VOCs$ concentration of exhibition room by Active type was higher than Passive type. Some VOCs was decreased with the lapse of time a temporary increase tendencies was. The annual average I/O ratio of TVOC was 9.0, ${\Sigma}VOCs$ was confirmed to occur in a large amount inside the exhibition hall ${\Sigma}VOCs$ was studied to 34.0. Correlation coefficient of ${\Sigma}VOCs$ was 0.367. Toluene was 0.567 that the survey was the largest analysis to the relationship between the two methods.

  • PDF

Correlation between Allergic Rhinitis Prevalence and Immune Responses of Children in Ulsan: A Case-control Study (울산지역 초등학생의 알레르기비염 유병과 면역반응과의 상관성: 환자-대조군 연구)

  • Lee, Jiho;Oh, Inbo;Kim, Ahra;Kim, Minho;Sim, Chang sun;Kim, Yangho
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.4
    • /
    • pp.249-258
    • /
    • 2015
  • Objectives: This study aims to investigate the correlations between the prevalence of allergic rhinitis (AR) and cytokines among elementary school children in an industrial city, Ulsan, South Korea, and to identify major environmental risk factors associated with AR prevalence. Methods: We conducted a case-control study in June 2009 and February 2010 in order to evaluate the relationship between AR and related cytokines. Data on physician-treated prevalence over the past 12 months and potential risk factors for AR were compiled through a questionnaire from a survey of 339 schoolchildren living in different urban environments. Logistic regression analysis was carried out with propensity score matched data (n=180) to assess the influences of cytokines (IL-13, IL-33, IL-4 and IL-5) on AR prevalence and to determine which environmental factors affected AR. Results: In univariate analysis, the AR prevalence was influenced by family history of AR (mother and siblings), environmental factors (odor condition and irritated symptoms of air pollution), and indoor allergens (D. farinae and D. pteronyssinus). The t-test demonstrated that eosinophils, Immunoglobulin E (IgE), and interleukins (IL-13 and IL-5) were statistically significantly different according to treatment of allergic rhinitis over the preceeding 12 months. The results of the multiple logistic regression analysis showed that a statistically significant association between several factors (such as irritated symptoms of air pollution (OR 4.075, CI 1.735-9.568), IL-13 (OR 0.825, CI 0.734-0.928), odor condition (OR 2.409, CI 0.908-6.389), and AR history of siblings (OR 2.217, CI 0.999-4.921)) and the prevalence of AR was found after adjusting for confounders. Conclusion: These results suggest that AR prevalence is significantly associated with cytokine level, genetic background, and outdoor environmental factors. Although living in a polluted area and genetic background can contribute to an increased risk of childhood AR, cytokine level should be considered as an important factor in the treatment of AR in the last 12 months.