• Title/Summary/Keyword: Relationship Strength

Search Result 2,257, Processing Time 0.029 seconds

An Analytical Evaluation of the Ductility of Reinforced High-Strength Concrete Columns (고강도 철근 콘크리트 기둥 부재의 연성해석)

  • 박훈규;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.463-466
    • /
    • 1999
  • Ductility is an important consideration in the design of reinforced high-strength concrete. Therefore, this research investigate the ductile behavior of rectangular high-strength concrete columns like as bridge piers with confinement steel. The effect on the ductility of axial load, lateral reinforcement ratio, longitudinal reinforcement ratio, shear ratio, and compressive strength of concrete were investigated analytically using layered section analysis. As the results, it was proposed the proper relationship between ductility and variables and formulated into equations.

  • PDF

Effect of Maturity on Strength Development of Polyester Polymer Concrete (성숙도가 폴리에스터 폴리머 콘크리트의 강도발현에 미치는 영향)

  • 연규석;김광우;김관호;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.223-228
    • /
    • 1994
  • The strength development of polymer concrete using an unsaturated polyester polymer varies depending on many factors. However, the strength development is mostly dependent upon the age and curing temperature if the mixture ratios are the same. This study conducted to experimentally describe the relationship between the strength development and maturity which is defined as a function of $\Sigma$(time $\times$ temperature). The research result may be applied to predict the compressive, tensile and splitting strengths of the polymer concrete by computing the maturinty of the concrete.

  • PDF

Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength (변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향)

  • 류현희;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF

Method for high temperature curing and strength development of high strength concrete micropores Relationship (고온 양생방법을 이용한 고강도 콘크리트의 미세공극과 강도발현 관계에 대한 연구)

  • Lee, Han Yong;Kim, Seong Deok;Lee, young Do;Myung, Ro Oun;Jung, Sang Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.58-59
    • /
    • 2013
  • In this study, the standard specimen heated to curing experiments and simulation experiments the absence of porosity distribution and the effect on the compressive strength has been investigated.

  • PDF

Characteristics of Early Strength and Velocity Development in High Strength Concrete Containing Fly Ash (플라이애시를 함유한 고강도 콘크리트의 조기 강도와 속도 발현 특성)

  • 이회근;윤태섭;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.43-48
    • /
    • 2001
  • The use of fly ash in cement and concrete industries has many benefits including engineering, economic, and ecological aspects. However, it has a disadvantage of low strength development, especially at early ages. In this study, in order to overcome this problem, the early strength accelerating agent($NA_{2}$ $SO_{4}$) was selected and applied to the production of high strength concrete(HSC) containing fly ash. It was found that the compressive strength of fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ has greater than that of concrete containing fly ash only until 7 days after casting. From the microstructural point of view, ettringite increased and pores decreased in fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ , leading to the development of early age strength. It was also found that the velocity vs. strength relationship of HSC is considerably different from that of low-strength concrete(LSC). Therefore, in order to predict early age strength of HSC, a estimation equation different from that for LSC is needed.

  • PDF

An experimental Study on the Strength Control of High Fluidity Concrete by Maturity (적산온도방식에 의한 고유동콘크리트의 강도관리에 관한 실험적 연구)

  • 김무한;남재현;김규용;길배수;한장현
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2000
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength with time as a result of the cement hydration and, thus the rate of hydration, as in any chemical reaction, depends primarily on the concrete temperature during hydration. Thus, the strength of concrete is function of its time-temperature history. This goals of the present study are to investigate a relationship between strength of high-fluidity concrete and maturity that is expressed as a function of an integral of the curing period and temperature, predict strength of concrete.

Mechanical properties of high strength lightweight self-compacting concrete using simple mixed design (간편배합설계 방법을 이용한 고강도경량 자기충전콘크리트의 역학적 특성)

  • Choi, Yun-Wang;Shin, Hwa-Cheol;Kim, Yong-Jic;Choi, Wook;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.204-207
    • /
    • 2004
  • In this paper, mechanical properties of the high strength lightweight self-compacting concrete with simple mixed design method was investigated. Experimental tests were performed as such compressive strength, splitting tensile strength, modulus of elasticity and density of high strength lightweight self-compacting concrete. The 28 days compressive strength of high strength lightweight self-compacting concrete with the LC replacement ratio of $100\%$ reduces about $31\%$ but LF replacement ratio of $100\%$ increase about $20\%$ compared that of the control concrete. The structural efficiency of high strength lightweight self-compacting concrete increase with proportional to the replacement into of LF. The relationship between the splitting tensile strength and 28 days compressive strength can be represented by the equation $f_s=0.076f_{ck}+0.5582$. The modulus of elasticity was found to be lower than that of normal weight concrete, ranging form 24 to 33 GPa.

  • PDF

Bond Strength and Tensile Strength of Polymer-Modified Mortar Using Styrene and Butyl Acrylate (St/BA를 혼입한 폴리머 시멘트 모르타르의 부착강도 및 인장강도 특성)

  • You, Kipyo;Hyung, Wongil
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.820-826
    • /
    • 2014
  • The objective of this study is to find the relationship between the tensile strength of the polymer film and the bond strength and tensile strength of the polymer-modified mortar using styrene (St) and butyl acrylate (BA), and porosity. In the test results, the bond strength and tensile strength of the polymer-modified mortar increased with increases in the tensile strength of polymer film and the fine pore volume.

Study on the Correlation Between the Imbalance of Muscle Strength and the Score of EMG-Biofeedback Game at Ankle Joint in Healthy Adults

  • Ko, Yu-Min;Park, Seol;Lim, Chang-Hun;Lee, Woo-Jin;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.6
    • /
    • pp.386-391
    • /
    • 2015
  • Purpose: This study investigated whether the strength imbalance between two muscles can affect the score of EMG based biofeedback game, and whether the EMG based biofeedback game score can be used as predictable indicator of the degree of muscle balance alternating the conventional strength measuring equipment. Methods: 40 participated in this study. Biodex was used to measure the peak torque/weight in order to calculate the muscle strength balance index between plantar flexor and dorsiflexor of ankle joint. And muscle balance index (MBI) was calculated. The EMG biofeedback game scores of dorsiflexor and plantar flexor were acquired, so that the EMG electrodes were attached at tibialis anterior and gastrocnemius. The relationship between the game score and the muscle balance index were analyzed. Results: There was negative correlation between the muscle balance index between plantar flexor and dorsiflexor and the peak torque/weight of plantar flexor (r=-0.70). And there was negative correlation between the muscle balance index between plantar flexor and dorsiflexor and the game score of plantar flexor (r=-0.83). Conclusion: The EMG biofeedback game score had significant relationship with muscle imbalance at ankle joint, so it seems that the game score can be used for predicting the degree of muscle imbalance as a parameter.

Shear behavior of RC interior joints with beams of different depths under cyclic loading

  • Xi, Kailin;Xing, Guohua;Wu, Tao;Liu, Boquan
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • Extensive reinforced concrete interior beam-column joints with beams of different depths have been used in large industrial buildings and tall building structures under the demand of craft or function. The seismic behavior of the joint, particularly the relationship between deformation and strength in the core region of these eccentric reinforced concrete beam-column joints, has rarely been investigated. This paper performed a theoretical study on the effects of geometric features on the shear strength of the reinforced concrete interior beam-column joints with beams of different depths, which was critical factor in seismic behavior. A new model was developed to analyze the relationship between the shear strength and deformation based on the Equivalent Strut Mechanism (ESM), which combined the truss model and the diagonal strut model. Additionally, this paper developed a simplified calculation method to estimate the shear strength of these type eccentric joints. The accuracy of the model was verified as the modifying analysis data fitted to the test results, which was a loading test of 6 eccentric joints conducted previously.