• Title/Summary/Keyword: Relationship Strength

Search Result 2,257, Processing Time 0.034 seconds

A Study on the Mechanical Characteristics of Compression Member Confined the Cast Frame Using Continuous Fiber Mesh (연속섬유 거푸집으로 보강된 압축부재의 역학적 특성에 관한 연구)

  • Ko, Hune-Bum
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.99-104
    • /
    • 2002
  • Recently, the continuous fiber materials has become more important materials to repair and to reinforce concrete structural members. Continuous fiber meshes are effective for shear and confining reinforcement and provide excellent durability when combined with high strength mortar The purpose of this study is to verify the relationship between concrete strength and the ductility of inner concrete confined laterally by continuous fiber meshes. For this study, Experimental studies were conducted by compressive members using the cast frame of high strength mortar and continuous fiber meshes. Therefore, the result shows that compressive strength and ductility has improved according to the amount of the fiber meshes, and that the lateral confined effect of members with 3- or 4-axis mesh arrangement is bigger than that of members with 2-axis mesh. These data have to be used to verify the characteristic of concrete structure members reinforced continuous fiber mesh.

An Experimental Study on the Strength and Permeability Characteristics of Repair Mortar (보수용 모르타르의 강도 및 투과특성에 관한 연구)

  • Paik, Shin-Won
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.105-109
    • /
    • 2003
  • Structure surfaces damaged due to many causes are repaired by several special mortars. But wide studies about the permeability of these mortars were rarely conducted. In this study compressive strength test, flexural strength test and bond strength test of these mortars were conducted. And chloride ion penetration test was also conducted to explore the permeability charcteristics of selected repair mortars. This test was carried out following the standard ASTM C1202-91. Colouriemtric penetration depth can be drawn from these test results using a relationship equation between colourimetric penetration depth and charge passed which C. Andrade suggested. Diffusion coefficient can be calculated by CTH rapid method. To the end, the present study can provide a firm base for the application of repair mortars to concrete structures.

The Effects of Temperature Change on the Bending Strength of CF/PEEK Laminates after Impact (온도변화가 CF/PEEK 적층재의 충격 후 굽힘강도에 미치는 영향)

  • 양인영;정종안;나승우
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • In this paper, when CF/PEEK laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(interlaminar separation and transverse crack) of CF/PEEK laminates and the relationship between residual lift and impact damages are experimentally investigated. Composite laminates used in this experiment are CF/PEEK orthotropic laminated plates, which have two-interlaces [$0^{\circ}_4/90^{\circ}_8/0^{\circ}_4$]. A steel ball launched by the air gun collides against CF/PEEK laminates to generate impact damages. And then CF/PEEK specimens with impact damages are observed by a scanning acoustic microscope under room and high temperatures. In this experimental results, various relations are experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/PEEK laminates.

Evaluation of Lightweight Soil as a Subgrade Material (경량혼합토의 도로 노상층 재료 사용 가능성 평가)

  • Park, Dae-Wook;Vo, Viet Hai
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.57-64
    • /
    • 2013
  • PURPOSES : It is to evaluate lightweight soil as a subgrade material based on mechanical tests and calculation of pavement performance. METHODS : In this research, various contents of cement and air foam are used to make lightweight soil using wasted dredged soil. Uniaxial compressive strength test is conducted to evaluate strength of 7 and 28 day cured specimens. Secant modulus was calculated based on the stress and strain relationship of uniaxial compressive strength test. Resilient modulus test was measured using by repeated triaxial compression test. The measured resilient modulus was used in layered elastic program to predict fatigue and rutting life at a given pavement structure. RESULTS : Uniaxial compressive strength increases as cement content increases but decrease as air foam content increases. Resilient modulus also increases as cement content increases and decrease as air foam content decrease. CONCLUSIONS : It is concluded that dredge clay soil can be used as subgrade layer material using by lightweight treated soil method.

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.

Test study of precast SRC column under combined compression and shear loading

  • Chen, Yang;Zhu, Lanqi;Yang, Yong
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.265-275
    • /
    • 2022
  • A new type of precast steel reinforced concrete (PSRC) column was put forward in this paper. In order to study the static performance of PSRC column and hollow precast steel reinforced concrete (HPSRC) column subjected to combined compression and shear loading, a parametric test was carried out and effects of axial compression ratio, concrete strength and shear ratio on the mechanical behavior of composite PSRC column and HPSRC column were explored. In addition, the cracks development, load-span displacement relationship, strain distribution and shear bearing strength of column specimens were emphatically focused. Test results implied that shear failure of all specimens occurred during the test, and higher strength of cast-in-place concrete, smaller shear ratio and larger axial compression ratio could lead to greater shear resistance, but when the axial compression ratio was larger than 0.36, the shear capacity began to decrease gradually. Furthermore, truss-arch model for determining the shear strength of PSRC column and HPSRC column was proposed and the calculated results obtained from proposed method were verified to be valid.

Experimental investigation of the stress-strain behavior of FRP confined concrete prisms

  • Hosseinpour, F.;Abbasnia, R.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.177-192
    • /
    • 2014
  • One of the main applications of FRP composites is confining concrete columns. Hence identifying the cyclic and monotonic stress-strain behavior of confined concrete columns and the parameters influencing this behavior is inevitable. Two significant parameters affecting the stress-strain behavior are aspect ratio and corner radius. The present study aims to scrutinize the effects of corner radius and aspect ratio on different aspects of stress-strain behavior of FRP confined concrete specimens (rectangular, square and circular). Hence 44 FRP confined concrete specimens were tested and the results of the tests were investigated. The findings indicated that for specimens with different aspect ratios, the relationship between the ultimate stress and the corner radius is linear and the variations of the ultimate stress versus the corner radius decreases as a result of an increase in aspect ratio. It was also observed that increase of the corner radius results in increase of the compressive strength and ultimate axial strain and increase of the aspect ratio causes an increase of the ultimate axial strain but a decrease of the compressive strength. Investigation of the ultimate condition showed that the FRP hoop rupture strain is smaller in comparison with the one obtained from the tensile coupon test and also the ultimate axial strain and confined concrete strength are smaller when a prism is under monotonic loading. Other important results of this study were, an increase in the axial strain during the early stage of unloading paths and increase of the confining effect of FRP jacket with the increase and decrease of the corner radius and aspect ratio respectively, a decrease in the slope of reloading branches with cycle repetitions and the independence of this trend from the variations of the aspect ratio and corner radius and also quadric relationship between the number of each cycle and the plastic strain of the same cycle as well as the independence of this relationship from the aspect ratio and corner radius.

A Study on the Relationship between Dissimilar Metals Friction Welded Joints Strength Properties and Ultrasonic Reflection Coefficients (이종재 마찰용접부 강도특성과 초음파 반사계수와의 상관성에 관한 연구)

  • S. K. Oh;D. J. Kim;S. D. Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.34-34
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial application with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristics of the pulse echo effects according to various change in welding conditions. This paper presents a new attempt to detect the bond strength of friction welds by ultrasonic. Instead of looking for a flaw or cracks at the interface, the new approach evaluates the coefficient by reflection which provides a single quantitative indicator involving the acoustic energy reflected at the interface. The objective of this study is to find the relationship between the reflection coefficients and the weld strength. Results of the bar-to-bar friction welding of aluminum to copper and stainless steel and such relationship investigation are presented and interpreted.

A Study on the Relationship between Dissimilar Metals Friction Welded Joints Strength Properties and Ultrasonic Reflection Coefficients (이종재 마찰용접부 강도특성과 초음파 반사계수와의 상관성에 관한 연구)

  • O, Se-Gyu;Kim, Dong-Jo;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.80-85
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial application with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristics of the pulse echo effects according to various change in welding conditions. This paper presents a new attempt to detect the bond strength of friction welds by ultrasonic. Instead of looking for a flaw or cracks at the interface, the new approach evaluates the coefficient by reflection which provides a single quantitative indicator involving the acoustic energy reflected at the interface. The objective of this study is to find the relationship between the reflection coefficients and the weld strength. Results of the bar-to-bar friction welding of aluminum to copper and stainless steel and such relationship investigation are presented and interpreted.

  • PDF

The Relationships between Isokinetic Muscular Function and Flexibility of the Lower Back Pain(LBP) in Elite Weight Lifter (엘리트 남녀역도선수들의 등속성 허리 근기능 및 유연성과 요통과의 관계)

  • Kim, Don-Hyun;Joo, Ynu-Yong
    • Journal of Korean Clinical Health Science
    • /
    • v.3 no.2
    • /
    • pp.311-319
    • /
    • 2015
  • Purpose. This study of purpose was to compare and analyze the relationship among the isokinetic trunk muscular functions, flexibility and low back pain of elite weight lifter with regard of sex. Methods. we measured the level of low back pain, isokinetic muscular functions according to gender, then analyzed the relationship between isokinetic functions and the level of low back pain, between flexibility and the level of pain, between Athletic Career and the level. Results. In this study, the gender, the VAS point was $2.6{\pm}2.3$ and the VRS point was $2.3{\pm}1.3$ in males. The other side, in females the VAS points was $3.6{\pm}1.7$ and the VRS was $3.2{\pm}1.1$. There was significant negative correlation(r=-0.826) between the VAS point and the maximal flexion muscular strength per kilogram of $30^{\circ}/sec$ isokinetic exercise in female. also there was negative correlation between the muscular flexion strength per kilogram and the VRS point in female, but there was no significant relationship in male. Conclusions. In current study, these results suggested that the higher muscular flexion strength per kilogram is, the lower the level of low back pain is in female athletes. this is caused by the imbalance between Abdominal Muscles and Back Extensor in weight lifter. Therefore, there is the need to apply the program to improve the balance of trunk.