• 제목/요약/키워드: Reinforcing technology

검색결과 585건 처리시간 0.025초

기존말뚝과 보강말뚝의 하중분담 특성에 관한 실험적 연구 (Experimental Study for Load Distribution Characteristics of Existing and Reinforcing Piles)

  • 조성훈;최기선;조삼덕;유영찬;최창호
    • 한국지반환경공학회 논문집
    • /
    • 제15권12호
    • /
    • pp.87-95
    • /
    • 2014
  • 최근 공동주택 수직증축 리모델링 사업 등 기초구조물을 보강하기 위한 기술적 수요가 증가하고 있다. 본 논문에서는 기존 구조물을 지지하는 기존말뚝에 보강말뚝을 추가로 설치할 경우 추가하중에 의한 기존말뚝과 보강말뚝의 하중분담 특성을 연구하였다. 정사각형의 기초판에 설치된 기존말뚝 4본에 허용하중을 재하한 후, 기초판 중앙에 보강말뚝 1본을 추가로 설치하고 추가하중을 재하하였다. 실험결과로부터 기존말뚝에 재하되는 하중이 허용지지력을 초과한 이후에 기존말뚝과 보강말뚝이 하중을 균등하게 분담하는 것으로 분석되었다. 기존말뚝에 허용하중 재하 후, 허용하중 대비 60 %, 80 %, 100 %까지 제하(unloading)하고, 보강말뚝을 설치한 후 추가하중을 재재하(reloading)하는 실험을 수행하였다. 연구 결과 제하 하중의 양이 증가함에 따라 재재하 시 기존말뚝과 보강말뚝이 하중을 균등하게 분담하는 재재하 하중이 감소하는 경향을 파악하였다.

Improving the Mechanical Properties of Salt Core through Reinforcing Fibers

  • Ahrom Ryu;Soyeon Yoo;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • 센서학회지
    • /
    • 제32권3호
    • /
    • pp.159-163
    • /
    • 2023
  • Salt cores have attracted considerable attention for their application to the casting process of electric vehicle parts as a solution to ecological issues. However, the salt core still has low mechanical strength for use in high-pressure die casting. In this study, we investigated the improvements in the bending strength of KCl-based salt cores resulting from the use of reinforcing materials. KCl and Na2CO3 powders were used as matrix materials, and glass fiber and carbon fiber were used as reinforcing materials. The effects of carbon fiber and glass fiber contents on the bending strength properties were investigated. Here, we obtained a new fiber-reinforced salt core composition with improved bending strength for high-pressure die casting by adding a relatively small amount of glass fiber (0.3 wt%). The reinforced salt core indicates the improved properties, including a bending strength of 49.3 Mpa, linear shrinkage of 1.5%, water solubility rate of 16.25 g/min·m2 in distilled water, and hygroscopic rate of 0.058%.

Reinforcing Efficiencies of Two Different Cellulose Nanocrystals in Polyvinyl Alcohol-Based Nanocomposites

  • Park, Byung-Dae;Causin, Valerio
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권4호
    • /
    • pp.250-255
    • /
    • 2013
  • As a renewable nanomaterial, cellulose nanocrystal (CNC) isolated from wood grants excellent mechanical properties in developing high performance nanocomposites. This study was undertaken to compare the reinforcing efficiency of two different CNCs, i.e., cellulose nanowhiskers (CNWs) and cellulose nanofibrils (CNFs) from hardwood bleached kraft pulp (HW-BKP) as reinforcing agent in polyvinyl alcohol (PVA)-based nanocomposite. The CNWs were isolated by sulfuric acid hydrolysis while the CNFs were isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. Based on measurements using transmission electron microscopy, the individual CNWs were about $6.96{\pm}0.87nm$ wide and $178{\pm}55nm$ long, while CNFs were $7.07{\pm}0.99nm$ wide. The incorporation of CNWs and CNFs into the PVA matrix at 5% and 1% levels, respectively, resulted in the maximum tensile strength, indicating different efficiencies of these CNCs in the nanocomposites. Therefore, these results suggest a relationship between the reinforcing potential of CNCs and their physical characteristics, such as their morphology, dimensions, and aspect ratio.

A comparative study on bond of different grade reinforcing steels in concrete under accelerated corrosion

  • Kurklu, G.;Baspinar, M.S.;Ergun, A.
    • Steel and Composite Structures
    • /
    • 제14권3호
    • /
    • pp.229-242
    • /
    • 2013
  • Corrosion is important reason for the deterioration of the bond between reinforcing steel and the surrounding concrete. Corrosion of the steel mainly depends on its microstructure. Smooth S220, ribbed S420 and S500 grade reinforcing steels were used in the experiments. Samples were subjected to accelerated corrosion. Pullout tests were carried out to evaluate the effects of corrosion on bond strength of the specimens. S500 grade steel which has tempered martensite microstructure showed lower corrosion rate in concrete than S220 and S420 steels which have ferrite+perlite microstructure. S500 grade steel showed highest bond strength among the other steel grades in concrete. Bond strength between reinforcing steel and concrete increased with increase in the strength of steel and concrete. It also depends on whether reinforcing bar is ribbed or not.

선조립공법을 활용한 원전구조물 철근모듈화 Mock-up 실험연구 (Mock-up Test for Nuclear Power Plant Rebar Modulation Applying Febrication)

  • 임상준;이병수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.13-14
    • /
    • 2015
  • To minimize construction of nuclear facility, it is required to reduce reinforcing bar amount and solve reinforcing bar concentration and for this, it is necessary to develop appication design technology and modular of high strength reinforcing bar. Hence, KHNP reduces excessive reinforcing bar amount which can cause possibility of poor construction of concrete through design standard development and modular of nuclear facility structure using high strength reinforcing bar to raise economics and has its purpose to maintain high-level safety and durability as they are. After reviewing the rebar drawing of the NPP structures and performing the mock-up test, the rebar modulation method in the various area of the NPP Structure has been established.

  • PDF

Effect of particle size on direct shear deformation of soil

  • Gu, Renguo;Fang, Yingguang;Jiang, Quan;Li, Bo;Feng, Deluan
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.135-143
    • /
    • 2022
  • Soils are natural granular materials whose mechanical properties differ according to the size and composition of the particles, so soils exhibit an obvious scale effect. Traditional soil mechanics is based on continuum mechanics, which can not reflect the impact of particle size on soil mechanics. On that basis, a matrix-reinforcing-particle cell model is established in which the reinforcing particles are larger-diameter sand particles and the matrix comprises smaller-diameter bentonite particles. Since these two types of particles deform differently under shear stress, a new shear-strength theory under direct shear that considers the stress concentration and bypass phenomena of the matrix is established. In order to verify the rationality of this theory, a series of direct shear tests with different reinforcing particle diameter and volume fraction ratio are carried out. Theoretical analysis and experimental results showed that the interaction among particles of differing size and composition is the basic reason for the size effect of soils. Furthermore, the stress concentration and bypass phenomena of the matrix enhance the shear strength of a soil, and the volume ratio of reinforcing particles has an obvious impact on the shear strength. In addition, the newly proposed shear-strength theory agrees well with experimental values.

Shear behaviour of AAC masonry reinforced by incorporating steel wire mesh within the masonry bed and bed-head joint

  • Richard B. Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.363-382
    • /
    • 2024
  • In India's north-eastern region, low-strength autoclaved aerated concrete (AAC) blocks are widely used for constructing masonry structures, making them susceptible to lateral forces due to their low tensile and shear strengths and brittleness nature. The absence of earthquake-resistant attributes further compromises their resilience during seismic events. An economically viable solution to enhance the structural integrity of these masonry structures involves integrating steel wire mesh within the masonry mortar joints. This study investigates the in-plane shear behaviour of AAC masonry by employing two approaches: incorporating steel wire mesh within the masonry bed joint "BJ" and the masonry bed and head joint "BHJ". These approaches aim to augment strength and ductility, potentially serving as earthquake-resistant attributes in masonry structures. Three distinct variations of steel wire mesh and three reinforcing arrangements, i.e. (-), (L) and (Z) arrangement were employed to reinforce the two approaches. The test result reveals a significant enhancement in structural performance upon inclusion of steel wire mesh in both reinforcing approaches, with the "BHJ" approach outperforming the "BJ" approach and the unreinforced masonry, along with increase in capacity as the wire mesh size increases. Furthermore, the effectiveness of the reinforcing arrangement is ranked with the (Z) arrangement showing the largest performance, followed by the (L) and (-) arrangement.

신소재 복합재료를 이용한 비굴착 지하매설관 보수-보강공법 (Trenchless Repairing-Reinforcing Process of Underground Pipes with Advanced Composite Materials)

  • 진우석;권재욱;이대길;유애권
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.43-48
    • /
    • 2001
  • To overcome the disadvantages of conventional excavation technology, various trenchless (or excavation free, or no-dig) repair-reinforcement technologies have been developed and tried. But trenchless technologies so fat developed have some brawbacks such as high cost and inconvenience of operation. In this study, a repairing-reinforcing process for underground pipes with glass fiber fabric polymer composites using VARTM(Vacuum Assisted Resin Transfer Molding) has been developed. The developed process requires shorter operation time and lower cost with smaller and simpler operating equipments than those of the conventional trenchless technologies. For the reliable operation of the developed method, a simple method to apply pressure and vacuum to the reinforcement was devised and flexible mold technology was tried. Also, resin filling and cure status during RTM process were monitored with a commercial dielectrometry cure monitoring system, LACOMCURE. From the investigation, it has been found that the developed repairing-reinforcing technology with appropriate process variables and on-line cure monitoring has many advantages over conventional methods.

  • PDF

Corrosion Resistance Properties of Rice Husk Ash Blended Concrete

  • Ganesan, K.;Rajagopal, K.;Thangavel, K.
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.12-17
    • /
    • 2007
  • Portland cement incorporating supplementary cementing material develops excellent mechanical properties and long term durability characteristics. India is a leading rice producing country and rice husk is considered as waste in the rice milling industries. In this present work, the rice husk ash (RHA) was added to concrete as cement replacement from 0 to 30%. Corrosion performance of reinforcing steel embedded in RHA blended concretes was studied using linear polarization, AC impedance and gravimetric methods. The corrosion rate of steel bars embedded in RHA concretes were compared with control concrete. The results clearly indicate that the corrosion rate of reinforcing steel embedded in concrete is significantly reduced with the incorporation of RHA. A good correlation among gravimetric method and electrochemical methods was observed. Electrochemical impedance study showed 98 percentage reduction in corrosion rate to the RHA blended concrete with 15% replacement than control concrete.

강섬유를 보강한 강상판 합성보의 거동에 관한 기초적 연구 (Fundamental Study of Behavior on Steel·Concrete Composite Beam Reinforced Steel Fiber)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제11권2호
    • /
    • pp.93-98
    • /
    • 2008
  • Steel fibre reinforced concrete (SFRC) were considered a new technology for the construction industry. However today this technology has found wider acceptance among the construction industry. Currently, steel fibres are used in varied segments in many application areas across different segments in the construction industry, especially in tunneling, airports, warehouses, etc. Time and safety are the main factors are among the various advantages which renders steel fibres superior to the competing product. For fibers reinforcing, The maximum load carrying capacity is controlled by fibers pulling out of the composite because fiber reinforcing does not have a deformed surface like larger steel reinforcing bars. The study demonstrated that above concept is applicable and effective in concrete structure by analytical study. The analytical result appears that SFRP have the potential to significantly increase the strength of existing concrete structures, while at the same time dramatically improving their fracture energy characteristics.

  • PDF