• Title/Summary/Keyword: Reinforcing Effect

Search Result 901, Processing Time 0.028 seconds

Mechanical Properties of Papers Prepared from Hardwood KP and Bacterial Cellulose (활엽수크라프트펄프 및 박테리아 셀룰로오스부터 제조한 종이의 물성)

  • 조남석;김영신;박종문;민두식;안드레레오노비치
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.53-63
    • /
    • 1997
  • Most cellulose resources come from the higher plants, but bacteria also synthesize same cellulose as in plants. Many scientists have been widely studied on the bacterial cellulose, the process development, manufacturing, even marketing of cellulose fibers. The bacterial celluloses are very different in its physical and morphological structures. These fibers have many unique properties that are potentially and commercially beneficial. The fine fibers can produce a smooth paper with enchanced its strength property. But there gave been few reports on the mechanical properties of the processing of bacterial cellulose into structural materials. This study were performed to elucidate the mechanical properties of sheets prepared from bacterial cellulose. Also reinforcing effect of bacterial cellulose on the conventional pulp paper as well as surface structures by scanning electron microscopy were discussed. Paper made from bacterial cellulose is 10 times much stronger than ordinary chemical pulp sheet, and the mixing of bacterial cellulose has a remarkable reinforcing effect on the papers. Mechanical strengthes were increased with the increase of bacterial cellulose content in the sheet. This strength increase corresponds to the increasing water retention value and sheet density with the increase of bacterial cellulose content. Scanning electron micrographs were shown that fine microfibrills of bacterial celluloses covered on the surfaces of hardwood pulp fibers, and enhanced sheet strength by its intimate fiber bonding.

  • PDF

Study on the Sintering, Repressing and Mechanical Properties of Al2O3 and Al-Cu-SiC Composites (Al2O3와 SiC 강화재가 첨가된 Al-Cu 기지 복합재료의 소결, 재압축 및 기계적 특성에 관한 연구)

  • 박정수;이성규;안재환;정형식
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • Effects of liquid phase and reinforcing particle morphology on the sintering of Al-6 wt%Cu-10 vol% $Al_2O_3$ or SiC particles were studied in regards to densification, structure and transverse rupture properties. The Al-Cu liquid phase penetrated the boundaries between the aluminum matrix powders and the interfaces with reinforcing particles as well, indicating a good wettability to the powders. This enhanced the densification during sintering and the resulting strength and ductility. Since most of the copper added, however, was dissolved in the liquid phase and formed a brittle $CuAl_2$ phase upon cooling rather than alloyed with the aluminum matrix, the strengthening effect by the copper was not fully realized. Reinforcing particles of agglomerate type were found less suitable for the liquid phase sintering than solid type particles. $Al_2O_3$ and SiC particles protluced little difference on the sintering behavior but their size had a large effect. Repressing of the sintered composites increased density and bending properties but caused debonding at the matrix-particle interfaces and also fracturing of the particles.

A Safety Analysis of the BTR Method by Construction Sequence (BTR공법의 시공단계별 안전성 해석)

  • Chung, Kuang-Mo;Lee, Won-Hee;Lee, Sang-Hyun;Bang, Myung-Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • In this study was conducted numerical analysis to evaluate the stability of BTR(Built-in Timber Roof Tunneling Method), which is one of construction methods of underground structures in the non-opening state. The discretion method was applied to individually model reinforcing members of BTR, and the homogeneity analysis technic by area ratio was used to verify the feasibility comparing this result with that from conventional analysis method. The parameter study was performed to evaluate the effect varying ground depth, distance length of reinforcing supports and to verify the field applicability of new analysis method. The results showed the very precise value with allowable error, so this method can be applied in the field, The more length of supporting members caused the more vertical displacement and the top displacement increment of support members is larger than that of ground surace. The effect of ground depth was more impressive than that of distance length of reinforcing supports.

Reinforcing Characteristics on Volume and Shape of Ductile Short-Fiber in Brittle Matrix Composites (취성기지 복합재료에서 연성 단섬유의 함유량 및 형상에 관한 보강특성)

  • Sin, Ik-Jae;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.250-258
    • /
    • 2000
  • The reinforcing effects of ductile short-fiber reinforced brittle matrix composites are studied by, measuring flexural strength, fracture toughness and impact energy as functions of fiber volume fraction and length. The parameters of fracture mechanics, K and J are applied to assess fracture toughness and bridging stress. It is found that fracture toughness is greatly, influenced by the bridging stress ill which fiber pull-out is occur. For the reinforcing effects as functions of fiber volume fraction($V_f$ = 1, 2, 3 %) and length(L = 3, 6. 10cm), the flexural strength is maximum at $V_f$ = 1% and both fracture toughness.

Bond Strength of Reinforcing Steel to High Strength, High Flow Belite Concrete (고강도, 고유동 Belite 콘크리트의 부착성능)

  • 김상준;조필규;이세웅;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.653-660
    • /
    • 1998
  • Bond strength of reinforcing bar to high-performance concrete using belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that the specimens with belire cement concrete show higher bond strength than those with portland cement concrete. Bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfies the modification factor for top reinforcement. The results also show that the bond strength is function of the square root of concrete compressive strength and cover thickness. The recently developed high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

  • PDF

A Study on the Reinforcing Effects of Inorganic Filler Contained NR Vulcanizates with Temperature and Loading Variation. (무기충전제(無機充塡劑)를 변량배합(變量配合)한 천연(天然)고무 가황체(加黃體)의 온도변화(溫度變化)에 따른 보강성효과(補强性效果)의 연구(硏究))

  • Choi, Jae-Woon;Hong, Chung-Sug;Chun, Kyung-Soo
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.293-304
    • /
    • 1987
  • The purpose of this study is to examine the effect of rubber-filler attachments on inorganic filler contained NR vulcanizatic. The results of this study showed as follows. The reinforcing properties and damping values of the vulcanizates in the elastic region showed strong relation with the filler characteristics and temperture. The vulcanizates filled with nature-activated inorganic filler like silica had higer elastic modulus and damping values than the vulcanizates of nature-nonactivated inorganic filter. The reinforcing effects of differential filler loadings on NR raised the effects with temperature rise, but the damping values varied with the filler characteristics and temperature variations.

  • PDF

Effect of Maximum Size of Coarse Aggregate on Passing Performance of Concrete between Reinforcing Bars (굵은골재의 최대치수가 콘크리트의 간극통과성에 미치는 영향)

  • Baik Dae-Hyun;Yoon Seob;Kim Jung-Bin;Lee Seong-Yeun;Yoon Ki-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • This study investigated filling performance of concrete which can pass between reinforcing bars and be fully filled, and examined fundamental properties of concrete which is before or after hardened state, in response to maximum size of coarse aggregate. This study was also originally intended to find out one of the method that can improve concrete quality, using crushed coarse aggregate. Test showed that passing ratio of concrete decreased as aggregate site increased and as space between reinforcing bars decreased. In addition concrete using bigger size of coarse aggregate exhibited slightly higher compressive strength and showed lower length change ratio of drying shrinkage.

  • PDF

Load-Settlement Characteristics of Drilled Shafts Reinforced by Rockbolts (락볼트로 보강된 심형기초의 하중-침하 분석)

  • 윤경식;이대수;정상섬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.366-373
    • /
    • 2002
  • This paper describes the load distribution and settlement of rockbolted-drilled shafts subjected to axial and lateral loads with the view to shortening the embedded depth of the pile shaft. The emphasis was on quantifying the reinforcing effects of rockbolts placed from the shafts to surrounding weathered rocks based on small-scale model tests peformed on instrumented piles. The major influencing parameters on reinforcing drilled shaft behavior are the number, the positions on the shaft, the grade, and the inclination angle at which the rockbolts are placed. The model tests was 1/40 scaled simulations of the behavior of the drilled shafts with varying combinations of the major influencing parameters. The incremental effects of reinforcement based on the various parameters have been weighed against load transfer characteristics before and after rockbolt installations.

  • PDF

Electric Degraded Properties of EP Cable Rubber (EP 케이블 고무의 전기적 열화 특성)

  • Lee, Sung-Ill;Bae, Duck-Kweon;Kim, Sang-Hyeon;Lee, Jong-Pil;Oh, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.516-517
    • /
    • 2008
  • The ethylene-propylene (EP) rubbers mixed with one to one ratio is used as an insulation material in the nuclear power plant. It was investigated the effect of the amount of reinforcing agent. moisture absorption and heat treatment on the Ethylene-Propylene(EP) rubbers. The level of degradation was measured by the amount of discharging and. charging currents. When $\gamma$ rays were radiated on the EP rubbers with more charging material, the amount of discharging and charging currents was depended on the amount of reinforcing agent It was verified that the discharging and charging currents irradiated by $\gamma$ rays were higher than those that was not irradiated.

  • PDF

Estimation of Electric Properties of Insulating Silicone Rubbers Added Reinforcing Fillers (보강성 충전제를 첨가한 절연용 실리콘 고무의 전기 특성 평가)

  • Lee, Sung-Ill
    • Elastomers and Composites
    • /
    • v.32 no.5
    • /
    • pp.309-317
    • /
    • 1997
  • Estimation of the dielectric properties of insulating silicone rubbers added reinforcing fillers $(SiO_2,\;0{\sim}140phr)$ are very important to investigate the polymer structure. The characteristies of the dielectric absorption in insulating silicone rubbers were studied in the frequency range from 30Hz to 1MHz at the temperature range from $0{\sim}170^{\circ}C$. In the case of non-filled specimen, the dielectric loss is due to the syloxane which is the main chain of silicone rubber at the low temperature below $50^{\circ}C$ and the frequency at 330Hz, and is due to methyl and vinyl radical over the frequency of 1MHz. It is confirmed that the methyl radical or the vinyl radical becomes thermal oxidation at the high temperature over $100^{\circ}C$ and then the dielectric disperssing owing to the carboxyl radical Is appeared. In the case of filled specimen, the dielectric constant is in creased with the additives of reinforcing fillers due to the effect of interfacial polarization explained by MWS(Maxwell-Wagner-Sillars)'s law. The dielectric loss is decreased by the disturbance of reinforcing fillers that is permeated between networks.

  • PDF