• Title/Summary/Keyword: Reinforcing Effect

Search Result 901, Processing Time 0.025 seconds

Structural Performance Evaluation of Prestressed Concrete Trapezoidal Girders Using Socket Joint System (소켓연결 방식을 이용한 프리스트레스트 콘크리트 제형 거더의 구조성능 평가)

  • Shim, Won-Bo;Min, Kyung-Hwan;Choi, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7244-7249
    • /
    • 2015
  • In this study, in order to asses the structural performance of trapezoidal PSC girder using a socket joint system and it is possible to calculate the optimized cross-section of the web element tests were carried out for each specimens. we conducted a socket joint performance test, web bending and shear performance tests and all tests were performed at 4 point loading method. The initial crack load of socket joint specimen was significantly lower than the reference specimen but post peak behavior was no significant differences. And the length of the loop joint of the reinforcing bars had no significant effect on the maximum load. As a web shear tests, to obtain a maximum load of the specimen has a prestressing rod reinforced at tension side. As a web flexural tests, to obtain higher diagonal cracking load in specimen of reinforced using prestressing rod than reference specimen.

An Application of Elasto-Plastic Model to Overhanging Geosynthetic-Reinforced Soil Structure (역경사형 토목섬유 보강토 구조물에 탄소성 모델의 적용)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.3-12
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted an effect arising from the reinforcement works so as to prevent the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan(1994) and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could be explained effectively the experimental results which are obtained by a full-scale in-situ model test.

  • PDF

Effect on the structural integrity and fatigue damage monitoring of smart composite structures with embedded intensity based optical fiber sensors (삽입된 광강도형 광섬유센서가 지능형 복합재 구조물의 건전성에 미치는 영향 및 피로손상 감시)

  • Lee, Dong-Chun;Lee, Jung-Ju;Seo, Dae-Cheol;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 2001
  • In this study, the effects of embedded optical fibers on the static properties under tensile load and dynamic properties under fatigue load of composite laminates were investigated by experimental tests and finite element analysis. Based on the results, it can be concluded that the embedded optical fiber sensors do not have significant effects on the structural integrity of the smart composite structures except when the sensors are embedded perpendicular to the adjacent reinforcing fibers under fatigue loading. An intensity-based optical fiber sensor was embedded in the crossply composite laminates to monitor the fatigue damage by detecting the stiffness changes of the laminates. The result of this experiment has shown that the intensity-based optical fiber sensor has large potential to monitor the fatigue damage of composite structures by detecting the stiffness changes of the structures with simple and inexpensive instruments and without complex post-processing of measured signals. In addition, the optical fiber sensor showed good resistance to fatigue loading and wide sensing ranges of stiffness.

  • PDF

An Analysis of Urban Green Network using Nearest Features Model in Korean Metropolitan Cities (최근린사상법을 활용한 6대 광역시 녹지네트워크 경향 분석)

  • Oh, Jeong-Hak;Jang, Gab-Sue;Kim, Yong-Bum
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.135-145
    • /
    • 2010
  • This study was carried out to investigate the current urban forest network and future plan of forest framework using nearest features program where stepping stones within 5km from the core forest were selected in the program. We found several conclusions as follows: First, we found that cities in inland area including Daegu, Dajeon and Gwangju have quite different types of forest network with comparing to the cities nearby coastline including Busan, Incheon and Ulsan. The cities in inland area have large mountain patch around each city. However they have small and lower number of island forests within their urban area. Otherwise, cities nearby coastline have more forest patches than in the cities in inland area, and Busan and Incheon especially have strong forest network using various size of forest patches. Second, Daegu and Daejeon have much smaller forest patches distributed in each urban area. So additional forest patches should be added to have highly strong forest network within urban area. Third, Ulsan and Gwangju have most stepping-stone forests close to the large mountain patches in suburban area, which are not able to connect to the forest patches in the central area of each city So additional forest patches are needed to be added in the central area of each city for reinforcing the effect of stepping stone in the central area. Though there should be an addition approach except for forest size and its isolation to construct the ecological network in an urban area, this indices can be a good method to check an environmental and ecological status in an urban area.

Effect of Steam Curing on Compressive Strength of Slag Binder Concrete (증기양생이 고로슬래그 콘크리트의 압축강도에 미치는 영향)

  • Lim, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.338-343
    • /
    • 2017
  • In this study, blast furnace slag powder was used in concrete to help reduce carbon dioxide emissions and to recycle industrial waste. Blast furnace slag powder is a byproduct of smelting pig iron and is obtained by rapidly cooling molten high-temperature blast furnace slag. The powder has been used as an admixture for cement and concrete because of its high reactivity. Using fine blast furnace slag powders in concrete can reduce hydration heat, suppress temperature increases, improve long-term strength, improve durability by increasing watertightness, and inhibit corrosion of reinforcing bars by limiting chloride ion penetration. However, it has not been used much due to its low compressive strength at an early age. Therefore, this study evaluates the effects of steam curing for increasing the initial strength development of concrete made using slag powder. The relationship between compressive strength, SEM observations, and XRD measurements was also investigated. The concrete made with 30% powder showed the best performance. The steam curing seems to affect the compressive strength by destroying the coating on the powder and by producing hydrates such as ettringite and Calcium-Silicate-Hydrate gel.

Manufacture and Properties of PMMA Grafted Starch/Carbon Black/NBR Composites (PMMA 그래프트 전분/카본블랙/NBR 복합체의 제조와 물성)

  • Kim, Min-Su;Cho, Ur Ryong
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.764-769
    • /
    • 2013
  • Starch was grafted by poly(methyl methacrylate) through the emulsion polymerization method. Modified starch/(acrylonitrile-butadiene rubber) (NBR) compounds were prepared by a latex blend method. The morphology, thermal properties and mechanical properties of the modified starch/carbon black/NBR composites were investigated with the change of starch concentration. The mechanical properties of the composites were improved by the addition of modified starch. But, when the concentration of modified starch was higher than 40 phr, the mechanical properties were deteriorated due to the poor dispersion of modified starch. At the same ratio of starch to carbon black, the composite showed a synergistic reinforcing effect by the good dispersion and high cross-linking density. In addition, the tensile strength, storage modulus, hardness, swelling and other properties were the best.

The Implications of Economic Sanctions on North Korea via Case Studies of Sanctions on Iran and Iraq (이란·이라크 경제제재 사례를 통해 본 대북 제재의 함의)

  • Kim, Yiyeon
    • Journal of International Area Studies (JIAS)
    • /
    • v.22 no.1
    • /
    • pp.135-160
    • /
    • 2018
  • This study aims to predict the likely effect of economic sanctions on North Korea by examining case studies of Iran and Iraq. While UN sanctions against Iraq had immediate negative consequences for society, such as causing famine and reinforcing the authoritarian regime, sanctions against Iran had some productive consequences after they were reinforced by the U.S. and EU in significantly reduced oil exports and government expenditure, which in turn led to regime change and willingness to negotiate nuclear programs for economic recovery. Apart from these distinct differences, sanctions in both countries caused high inflation, shortage of necessary supplies, and increased unemployment. Case studies of Iran and Iraq also reveal that the sanctions disproportionately affected women and children, which implies that the recently reinforced economic sanctions of the U.S. and China against North Korea will cause more suffering of similarly socially marginalized groups in North Korea.

Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites

  • Zaheer, Mohd Moonis;Jafri, Mohd Shamsuddin;Sharma, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.207-215
    • /
    • 2019
  • Application of nanotechnology can be used to tailor made cementitious composites owing to small dimension and physical behaviour of resulting hydration products. Because of high aspect ratio and extremely high strength, carbon nanotubes (CNTs) are perfect reinforcing materials. Hence, there is a great prospect to use CNTs in developing new generation cementitious materials. In the present paper, a parametric study has been conducted on cementitious composites reinforced by two types of multi walled carbon nanotubes (MWCNTs) designated as Type I CNT (10-20 nm outer dia.) and Type II CNT (30-50 nm outer dia.) with various concentrations ranging from 0.1% to 0.5% by weight of cement. To evaluate important properties such as flexural strength, strain to failure, elastic modulus and modulus of toughness of the CNT admixed specimens at different curing periods, flexural bending tests were performed. Results show that composites with Type II CNTs gave more strength as compared to Type I CNTs. The highest increase in strength (flexural and compressive) is of the order of 22% and 33%, respectively, compared to control samples. Modulus of toughness at 28 days showed highest improvement of 265% for Type II 0.3% CNT composites. It is obvious that an optimum percentage of CNT could exists for composites to achieve suitable reinforcement behaviour and desired strength properties. Based on the parametric study, a tentative optimum CNT concentration (0.3% by weight of cement) has been proposed. Scanning electron microscope image shows perfect crack bridging mechanism; several of the CNTs were shown to act as crack arrestors across fine cracks along with some CNTs breakage.

Suicide Attempt Behavior among Secondary School Students in Peru through PRECEDE Model (PRECEDE 모형을 통한 페루 중・고등학교 학생들의 자살시도 경험요인)

  • Kim, Ha Yun;Nam, Eun Woo
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.18 no.2
    • /
    • pp.1-25
    • /
    • 2017
  • Objectives: There is higher rates of experience of suicide ideation and suicide attempt of adolescents in the Lima and Callao region compared with the results of the epidemiological study (2013) conducted by Peru National Institute of Mental Health and the Global School-based Student Health Survey (2010) which is was conducted among adolescents across all regions of Peru. Based on the PRECEDE model, this study analyzed the prevalence and the factor associated with the suicide attempt among the adolescent in a poor urban area in Peru. Methods: A stratified random sampling was used for the survey to select study participants from the 6 secondary schools based in Comas or Callao. The survey was conducted November 25th and December 4th in 2015 and a total of 738 individuals included in the analysis. In order to analyze factors influencing suicide attempt, comparison of predisposing factor, reinforcing factor, enabling factor, behavioral factor, environmental factor, psychological factors by suicide attempt and suicide risk group were identified through the chi-square test and hierarchical logistic regression. Results: Results showed that those who reported having less parental understanding, less time spent with parents, and 'almost none/none' for parental affection had more experience of suicide attempt and were more likely to sort into the high suicide risk group. Also, a greater proportion of those with the experience of suicide attempt had more experience of smoking and alcohol consumption, and experience of physical abuse and feeling insulted and depression in comparison to that of those without experience of suicide attempt. Variables that had a significant effect on suicide attempt included depression, subjective happiness, smoking experience, sexual intercourse, involvement in fight, parental affection, and gender (male). Conclusions: The results of the current study can serve as grounds for the necessity of acknowledging that adolescent suicide does not simply depend on a couple of factors, but arises from situations in which individual, home, school, social factors influence one another, and therefore adolescent suicide should be prevented and addressed through a multi-dimensional and integrated approach.

  • PDF

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin

  • Lee, Gi-Bbeum;Kim, Haeran;Shin, Wonjae;Jeon, Jinseok;Park, In-Seok;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.