• Title/Summary/Keyword: Reinforcement section

Search Result 557, Processing Time 0.025 seconds

A Relative Study on Safe Factor by Different Analyses of Slope Stability (EPS공법에 의한 측방유동 저감효과에 관한 해석적 연구)

  • An, Joon-Hee;Jang, Jeong-Wook;Park, Choon-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1181-1186
    • /
    • 2006
  • This study analyzed the reductive effect of lateral flow by the section and height of reinforcement of EPS. The conclusions of the study are as follows. (1) The lateral flow increased as the section of reinforcement decreased. The reinforcement section that satisfied the allowable range of the lateral flow turned out to beapproximately 80% of the standard reinforcement section. (2) As reinforcement height was decreasing, the lateral flow increased. The reinforcement heigh that satisfied the allowable range of the lateral flow turned out to be approximately 50% of the total lateral height of abutment.

  • PDF

Optimum Seismic Design of Reinforced Concrete Piers Considering Economy and Constructivity (내진설계시 경제성 및 시공성을 고려한 RC 교각의 최적설계)

  • 조병완;김영진;윤은이
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.479-484
    • /
    • 2000
  • In this study, optimal design of reinforced concrete piers under seismic load is numerically investigated. Object function is the area of the concreate-section. Design variables are the total area of reinforcement and concrete-section dimension(Circular section diameter). Constraints of the design strength of the column, longitudinal reinforcement ratio and lower and upper bounds on the design variables are imposed. The reinforcement concrete column is analysed and designed by the Ultimated Strength Design method and load combination involving dead, live, wind and seismic load is used. For numerical optimization, ADS(Garret N, Vanderplaats_ routine is used. From the result of numerical examples, the concrete-section dimension was reduced, but longitudinal reinforcement was not changed. The results show that confinement reinforcement was reduced and confinement reinforcement spacing is increased. The higher strength of reinforcement used, the more concrete-section area was reduced.

  • PDF

Reinforcement layout design for deep beam based on BESO of multi-level reinforcement diameter under discrete model

  • Zhang, Hu-zhi;Luo, Peng;Yuan, Jian;Huang, Yao-sen;Liu, Jia-dong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.547-560
    • /
    • 2022
  • By presetting various reinforcement diameters in topology optimization with the discrete model finite element analysis, an algorithm of bidirectional evolutionary structural optimization of multi-level reinforcement diameter is presented to obtain the optimal reinforcement topologies which describe the degree of stress of different parts. The results of a comparative study on different reinforcement feasible domain demonstrate that the more angle types of reinforcement are arranged in the initial domain, the higher utilization rate of reinforcement of the optimal topology becomes. According to the nonlinear finite element analysis of some deep beam examples, the ones designed with the optimization results have a certain advantage in ultimate bearing capacity, although their failure modes are greatly affected by the reinforcement feasible domain. Furthermore, the bearing capacity can be improved when constructional reinforcements are added in the subsequent design. However the adding would change the relative magnitude of the bearing capacity between the normal and inclined section, or the relative magnitude between the flexural and shear capacity within the inclined section, which affects the failure modes of components. Meanwhile, the adding would reduce the deformation capacity of the components as well. It is suggested that the inclined reinforcement and the constructional reinforcement should be added properly to ensure a desired ductile failure mode for components.

Automated design of optimum longitudinal reinforcement for flexural and axial loading

  • Tomas, Antonio;Alarcon, Antonio
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.149-171
    • /
    • 2012
  • The problem of a concrete cross section under flexural and axial loading is indeterminate due to the existence of more unknowns than equations. Among the infinite solutions, it is possible to find the optimum, which is that of minimum reinforcement that satisfies certain design constraints (section ductility, minimum reinforcement area, etc.). This article proposes the automation of the optimum reinforcement calculation under any combination of flexural and axial loading. The procedure has been implemented in a program code that is attached in the Appendix. Conventional-strength or high-strength concrete may be chosen, minimum reinforcement area may be considered (it being possible to choose between the standards ACI 318 or Eurocode 2), and the neutral axis depth may be constrained in order to guarantee a certain sectional ductility. Some numerical examples are presented, drawing comparisons between the results obtained by ACI 318, EC 2 and the conventional method.

Study on behavior of T-section modular composite profiled beams

  • Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.457-473
    • /
    • 2010
  • In this study, specimens were made with profile thicknesses and shear reinforcement as parameters. The bending and shear behavior were checked, and comparative analysis was conducted of the results and the theoretical values in order to see the applicability of T-section Modular Composite Profiled Beams (TMPB). In TMPB, the profiles of formwork functions play a structural role resisting the load. Also, the module concept, which is introduced into TMPB, has advantages: it can be mass-produced in a factory, it is lighter than an existing H-beam, it can be fabricated on the spot, and its section size is freely adjustable. The T1 specimens exhibited ductile behavior, where the whole section displayed strain corresponding to yielding strain at least without separation between modules. They also exhibited maximum strength similar to the theoretical values even if shear reinforcement was not applied, due to the marginal difference between shear strength and maximum bending monment of the concrete section. A slip between modules was incurred by shear failure of the bolts in all specimens, excluding the T1 specimen, and therefore bending moment could not be fully displayed.

Ducti1ity, Evaluation of Circular Reinforced Concrete Piers with an Internal Steel Tube (강관 내무보강 중공교각의 연성도 평가)

  • 강영종;최진유;김도연;한택희
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.241-248
    • /
    • 2001
  • The ductility of circular hollow reinforced concrete columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. The results of analytical moment-curvature analyses for such hollow sections are compared with those for the circular section with the sane diameter. In this study, moment-curvature analyses are conducted with Mandel's confined concrete stress-strain relationship in which the effect of confinement is to increase the compression strength and ultimate strain of concrete. The moment-curvature analyses confirmed that the ductility is primarily influenced on the ultimate strain. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

  • PDF

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

A Case Study on the effects of Elephant Foot Method considering the rate of Changes in Tunnel Cross Section (터널 단면적 변화를 고려한 각부보강 영향성 평가)

  • Lee, Gil-Yong;Oh, Hyeon-Mun;Cho, Kye-Hwan;Oh, Jeong-Ho;Kim, Jong-Ju;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2018
  • In case of excavation of the tunnel under weak ground conditions, such as fault zone, leg pile reinforcement with the purpose of suppressing tunnel crown settlement and side wall displacement is commonly applied. There are convergence, crown settlement, leg settlement, and the axial force of leg as a main factor for confirming the safety of support considering the installation angle and length of leg pile reinforcement according to the increase in rate of change of tunnel cross-section. In particular, the influence of right corner settlement, among variables for safety confirmation during excavation, has been analyzed as the dominant factor in the most important priority management showing larger displacement tendency than the increase in rate of the cross-section. And, it was analyzed that the occurrence tendency of axial force on leg pile reinforcement showed the influence of behavior according to the friction support concept mechanism of the pile reinforcement rather than the increase in rate of tunnel cross-section, as it showed a small increase compared to the increase rate of the tunnel cross-section which did not show a great correlation from the viewpoint of the change of the axial force by the length of each leg pile reinforcement with regards to the change in rate of increase in tunnel cross-section. If a certain length of the leg pile reinforcement is selected based on the above grounds, even if the cross-section of the tunnel in poor ground condition is somewhat larger, it has been proved to be a more reasonable method considering the workability and economical efficiency by not extending the length of the leg pile reinforcement by force.

Analysis of Buckling Characteristics for Hat Section Member Using Structural Foam and Plastic Reinforcement (구조용 폼과 플라스틱 보강재를 적용한 모자 단면 부재의 좌굴 특성 분석)

  • Lee, Tae-Hyun;Shin, Shoung-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.114-119
    • /
    • 2008
  • The modern automotive industry develops innovative vehicle designs to meet increasing stability of car and performance demands of their customers. The improvement of frame rigidity by the structural foam is thought to be an effective means to improve the performance because of high applicability and minimum weight. The object of this paper is to examine the use of structural foam in a hat section as an optimum reinforcing means, to compare the reinforcing performance of structural foam versus a plastic reinforcement. The result of this paper indicated that reinforcing efficiencies are achieved by structural foam and plastic reinforcement shape.

The Characteristics of Curvature Ductility Factor of Reinforced Concrete Hollow Section Beams (철근콘크리트 속빈 단면 보의 곡률연성지수 특성)

  • Lee, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6542-6549
    • /
    • 2013
  • In highly elevated piers and long span beams, a hollow section is often used to reduce the self-weight and increase the flexural rigidity of members. Numerical analysis was conducted to obtain the moment-curvature curves and curvature ductility factor for the RC hollow section beams under a range of hollow portion sizes and reinforcement conditions in the upper flange and web. The curvature ductility factor was constantly maintained until the hollow portion size($b_i/b_o/h_i/h_o$) was less than or equal to 0.5. The curvature ductility factor decreased sharply if ($b_i/b_o/h_i/h_o$) was 0.7 or more. The curvature ductility factor of the beam decreased if reinforcement was provided in the web of the RC hollow section beam. To obtain the same level of the ductility factor as the singly reinforced section, the reinforcement should be provided in the upper flange as much as the web reinforcement.