• Title/Summary/Keyword: Reinforcement material

Search Result 1,050, Processing Time 0.035 seconds

A Study of Minimum Reinforcement Ratio of Singly Reinforced Beamy (단철근 보의 최소철근비에 대한 고찰)

  • Choi, Seung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.396-402
    • /
    • 2021
  • A cross section in RC flexural members must be designed to satisfy flexural strength and ductility requirements simultaneously. In design provisions, ductile behavior is ensured by a sufficient reinforcement ratio or depth of the neutral axis. If the reinforcement ratio is less than the balanced reinforcement ratio, ductile behavior is secured, and this value is theoretically the maximum reinforcement ratio. But for a cross section with less steel, brittle failure can occur regardless of ductile behavior because of unqualifying a cracking moment. Recently, designs with a minimum steel ratio have been increasing along with the use of high-strength material, so in design provisions, a minimum amount of reinforcement is suggested. In the KCI(2012) standard, a minimum amount of reinforcement was suggested in terms of strength of steel and concrete. But in the revised KCI(2017) standard, a minimum amount of reinforcement was suggested by a relationship between the design flexural strength and cracking moment indirectly. This code can reflect the effect of cover thickness, but a material model must be defined. Therefore, the minimum amount of reinforcement in KCI(2012) and KCI(2017) was examined, and a rational review method was studied by parametric analysis.

Reduction Method for Floor Impact Noise on APT Remodeling (공동주택 리모델링 현장의 바닥충격음 저감대책)

  • Park, Cheol-Yong;Hong, Goo-Pyo;Lee, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.524-525
    • /
    • 2009
  • Heavy-weight impact noise(HN) is the most irritating noise in Korean apartment houses. It has been proclaimed standard floor system of 210mm thick slab with isolation material in the wall type structure. But this regulation is applied only new construction field and is not considered remodeling field. In general, the LN can be reduced by using isolation material but HN is known as relating with stiffness, strength & boundary condition of slab. Therefore it is difficulty in improving the HN on remodeling field. In this study, We conducted the reinforcement of concrete slab using C.F.S.(carbon fiber sheet), steel plate and steel beam after on-dol with isolation material on the remodeling field. As the test results, It appeared using C.F.S was no improved but using steel plate & steel beam were a little improved on HN.

  • PDF

Study on plain concrete crack reduction characteristics by fiber type (섬유보강재 종류에 따른 무근콘크리트 균열저감 특성에 관한 연구)

  • Lee, Ji-Hwan;Yun, Chang-Yeon;Park, Gi-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.178-179
    • /
    • 2022
  • This study evaluated the crack reduction characteristics of concrete by type of fiber reinforced concrete. As a result of the experiment, it was shown that the fluidity decreased due to the mixing of the fiber reinforcing material. The higher the amount of fiber reinforced material used, the higher the decrease in fluidity. It was confirmed that the tensile strength was improved by the mixing of the fiber reinforcing material. The selection of fiber reinforcement has a great influence on the crack reduction effect.

  • PDF

Analysis of the Waterproof and Reinforcement Effect according to Slope Improvement of Aging Reservoir using Supplementary Cementitious Material (시멘트 대체재료를 사용한 노후 저수지의 사면 개량에 따른 차수 및 보강 효과 분석)

  • Song, Sang-Huwon;Cho, Dae-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.30-39
    • /
    • 2022
  • In this study, laboratory test, program analysis, and test construction in the field were performed to utilize Supplementary Cementitious Material (SCM) developed by recycled resources for slope reinforcement as slope improvement material for aging reservoir, and the results were analyzed. As results of the laboratory test, it was analyzed that the mixing ratio of SCM was appropriate by 9 %, and the coef. of permeability was decreased by about 10,000times, indicating a value close to that of the waterproof material applied in Korea. In addition, as a result of program analysis and test construction, it was analyzed that seepage did not occur in the part of reinforced using SCM and showed a higher safety facto r than domestic criteria. Therefore, since it shows sufficient waterproof and reinforcing effects in aging reservoir, it is judged that the slope improvement using SCM can replace the cement for repair and reinforcement method.

Evaluation of Influencing Factors on Settlement Behavior of Very Soft Ground with Reinforced Surface (표층처리공법으로 개량된 초연약지반의 침하거동에 미치는 영향인자 분석)

  • You, Seung-Kyong;Lee, Jong-Sun;Ham, Tae-Gew;Yang, Kee-Suk;Cho, Sam-Deok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.85-92
    • /
    • 2008
  • It is necessary to develop a rational design method for surface reinforcement of very soft ground because most current design works rely on merely crude empirical correlations. In this paper, the mechanical behavior of very soft ground that is surficially reinforced was investigated with the aid of a series of numerical analyses. Several material properties of each dredged soft ground, reinforcement and backfill sand mat have been exercised in the numerical analysis. The result of numerical analysis was compared with those of the laboratory model test. Through the matching process between the numerical and experimental result, it is possible to determine representative material properties of the dredged soft ground, reinforcements and backfill sand mat. These verified material properties permit to evaluate the effect of the stiffness of reinforcement and the thickness of sand mat on the overall deformation of the reinforced soft ground.

Performance assessment of advanced hollow RC bridge column sections

  • Kim, T.H.;Kim, H.Y.;Lee, S.H.;Lee, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.703-722
    • /
    • 2015
  • This study investigates the performance of advanced hollow reinforced concrete (RC) bridge column sections with triangular reinforcement details. Hollow column sections are based on economic considerations of cost savings associated with reduced material and design moments, as against increased construction complexity, and hence increased labor costs. The proposed innovative reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of advanced hollow column sections under quasi-static monotonic loading. The results showed that the proposed triangular reinforcement details were equal to the existing reinforcement details, in terms of the required performance. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of the RC structures; and adopted a modified lateral confining effect model for the advanced hollow bridge column sections. Our study documents the testing of hollow RC bridge column sections with innovative reinforcement details, and presents conclusions based on the experimental and analytical findings. Additional full-scale experimental research is needed to refine and confirm the design details, especially for the actual detailing employed in the field.

Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate

  • Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.399-405
    • /
    • 2019
  • The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.

Reinforcing Effect of Waste Tires As Reinforcement Material (지반보강재로서 폐타이어의 보강 효과)

  • 윤여원;최경순;천성한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.827-832
    • /
    • 2003
  • This study presented the reinforcing effect of sands by using newly devised 3D Tirecell. Plate loading tests for sand were conducted for different relative density and number of reinforced layers. From the tests, the ultimate bearing capacity of reinforced sand increased with increasing relative densities. The effect of reinforced layers with 0.4B interval is limited to 2 layers and further reinforcing effects can not be obtained beyond 3 layers. Especially the bearing capacity increased remarkably at 1 layer of Tirecell reinforcement and the degree of increase was small for 1 layer to 2 layers increase of reinforcement. Test results show that the reinforcing effect of Tirecell is prominent compared with commercial geocell in the literature.

  • PDF

Determination of Nominal Moment of Strengthening Beam with Carbon Fiber Sheets Using Strength Method (강도설계법으로 산정된 탄소섬유시트 보강 철근콘크리트 보의 공칭 휨모멘트)

  • 조백순;정진환;김성도;박대효;이우철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.593-598
    • /
    • 2002
  • Routinely, strength method for the determination of the nominal moment of reinforced concrete beam is assumed to also be suitable for strengthening beams with carbon fiber sheets since typically strengthening beams compromise 98% by volume of reinforced concrete. Flexural capacity of strengthening beam is absolutely dependent upon the type of reinforcement materials, amount of reinforcement, anchoring system, adhesion capacity between reinforcement material and concrete. Therefore, it might be incorrect to use strength method for analysis and design of strengthening beam without considering the differences in the load-deflection curves, mechanism of failure, state of stress distribution, failure strain of the reinforcement. An flexural analysis based on force equilibrium and strain comparability has been developed for strengthening beam. Systematic experimental investigations are compared with analytical results. Then, the adaptation of strength method for strengthening beam have also been discussed.

  • PDF

A Study on Strength Effect of Timber Beam with Inserting CFRP Plate (탄소섬유판 삽입공법에 의한 목재보 보강효과에 관한 연구)

  • Yu, Hye-Ran;Jung, Won-Chul;Choi, Min-Seok;Kwon, Ki-Hyuk
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.41-44
    • /
    • 2007
  • In repairing and reinforcing modem architecture, altering the features must be minimized. We concluded that inserting CFRP(Carbon Fiber Reinforcement Polymer) plate method is the most appropriate reinforcing method that minimize altering the features. This study focuses on the effect of reinforcement by inserting CFRP plate in the timber beam of the modem architecture's roof truss. We concluded that inserting CFRP plate method is highly influenced by its parent material, however, it is obvious that materials had reinforced by this method in general. We guess that this method is applicable to reinforcement in the modern architecture's roof truss in various ways.

  • PDF