• Title/Summary/Keyword: Reinforcement concrete structural work

Search Result 75, Processing Time 0.024 seconds

Structural behavior of concrete walls reinforced with ferrocement laminates

  • Shaheen, Yousry B.I.;Refat, Hala M.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.455-471
    • /
    • 2021
  • The present work focuses on experimental and numerical performance of the ferrocement RC walls reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh individually. The experimental program comprised twelve RC walls having the dimensions of 450 mm×100 mm×1000 mm under concentric compression loadings. The studied variables are the type of reinforcing materials, the number of mesh layers and volume fraction of reinforcement. The main aim is to assess the influence of engaging the new inventive materials in reinforcing the composite RC walls. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the composite walls employing ANSYS-10.0 Software. Parametric study is also demonstrated to check out the variables that can mainly influence the mechanical behavior of the model such as the change of wall dimensions. The obtained numerical results indicated the acceptable accuracy of FE simulations in the estimation of experimental values. In addition, the strength gained of specimens reinforced with welded steel mesh was higher by amount 40% compared with those reinforced with expanded steel mesh. Ferrocement specimens tested under axial compression loadings exhibit superior ultimate loads and energy absorbing capacity compared to the conventional reinforced concrete one.

Potential side-NSM strengthening approach to enhance the flexural performance of RC beams: Experimental, numerical and analytical investigations

  • Md. Akter, Hosen; Mohd Zamin, Jumaat;A.B.M. Saiful, Islam;Khalid Ahmed, Al Kaaf;Mahaad Issa, Shammas;Ibrahim Y., Hakeem;Mohammad Momeen, Ul Islam
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.179-195
    • /
    • 2023
  • The performance of reinforced concrete (RC) beam specimens strengthened using a newly proposed Side Near Surface Mounted (S-NSM) technology was investigated experimentally in this work. In addition, analytical and nonlinear finite element (FE) modeling was exploited to forecast the performance of RC members reinforced with S-NSM utilizing steel bars. Five (one control and four strengthened) RC beams were evaluated for flexural performance under static loading conditions employing four-point bending loads. Experimental variables comprise different S-NSM reinforcement ratios. The constitutive models were applied for simulating the non-linear material characteristics of used concrete, major, and strengthening reinforcements. The failure load and mode, yield and ultimate strengths, deflection, strain, cracking behavior as well as ductility of the beams were evaluated and discussed. To cope with the flexural behavior of the tested beams, a 3D non-linear FE model was simulated. In parametric investigations, the influence of S-NSM reinforcement, the efficacy of the S-NSM procedure, and the structural response ductility are examined. The experimental, numerical, and analytical outcomes show good agreement. The results revealed a significant increase in yield and ultimate strengths as well as improved failure modes.

Evaluation of Service Life of Silicate Impregnated Concrete (실리케이트 함침제를 사용한 콘크리트의 내구수명 평가)

  • Kim, Hyeok-Jung;Jang, Seung-Yup;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.533-541
    • /
    • 2018
  • Chloride attack, one of the major deterioration phenomena in RC(Reinforced Concrete) structure, causes corrosion of reinforcement, and this leads degradation of serviceability and structural problems. The application of silicate based impregnant to concrete surface are known for excellent constructability and cost-benefit for the maintenance of RC structure. In the work, the compressive strength and resistance of chloride diffusion for concrete were evaluated after improving property of concrete surface through two types of silicate based impregnant. Furthermore, based on the previous research and the result from the work, service life analysis was performed. After impregnating of silicate, strength and resistance of chloride diffusion were remarkably improved, and the service life increase to 159% for silicate A impregnation and 304% for silicate B impregnation, respectively.

Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top

  • Zhou, Chaoyang;Ren, Da;Cheng, Xiaonian
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.135-143
    • /
    • 2017
  • To upgrade shear performance of reinforced concrete (RC) beams, and particularly of the segments under negative moment within continuous T-section beams, a series of original schemes has been proposed using carbon fibre-reinforced polymer (CFRP) U-shaped strips for shear-strengthening. The current work focuses on one of them, in which CFRP U-strips are wound around steel bars against the top of the flange of a T-beam and then spliced on its bottom face in addition to being bonded onto its sides. The test results showed that the proposed scheme successfully provided reliable anchorage for U-strips and prevented premature onset of shear failure due to FRP debonding. The governing shear mode of failure changed from peeling of CFRP to its fracture or crushing of concrete. The strengthened specimens displayed an average increase of about 60% in shear capacity over the unstrengthened control one. The specimen with a relatively high ratio and uniform distribution of CFRP reinforcement had a maximum increase of nearly 75% in strength as well as significantly improved ductility. The formulas by various codes or guidelines exhibited different accuracy in estimating FRP contribution to shear resistance of the segments that are subjected to negative moment and strengthened with well-anchored FRP U-strips within continuous T-beams. Further investigation is necessary to find a suitable approach to predicting load-carrying capacity of continuous beams shear strengthened in this way.

Experimental study on long-term behaviour of CFRP strengthened RC beams under sustained load

  • Ahmed, Ehsan;Sobuz, Habibur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.105-120
    • /
    • 2011
  • The strengthening and rehabilitation of reinforced concrete structures with externally bonded carbon fibre reinforced polymer (FRP) laminates has shown excellent performance and, as a result, this technology is rapidly replacing steel plate bonding techniques. This paper addresses this issue, and presents results deals with the influence of external bonded CFRP-reinforcement on the time-dependent behavior of reinforced concrete beams. A total of eight reinforced concrete beams with cracked and un-cracked section, with and without externally bonded CFRP laminates, were investigated for their creep and shrinkage behavior. All the beams considered in this paper were simply supported and subjected to a uniform sustained loading for the period of six months. The main parameters of this study are two types of sustained load and different degrees of strengthening scheme for both cracked and un-cracked sections of beams. Both analytical and experimental work has been carried out on strengthened beams to investigate the cracking and deflection performance. The applied sustained load was 56% and 38% of the ultimate static capacities of the un-strengthened beams for cracked and un-cracked section respectively. The analytical values based on effective modulus method (EMM) are compared to the experimental results and it is found that the analytical values are in general give conservative estimates of the experimental results. It was concluded that the attachment of CFRP composite laminates has a positive influence on the long term performance of strengthened beams.

Cyclic performance of RC beam-column joints enhanced with superelastic SMA rebars

  • Ghasemitabar, Amirhosein;Rahmdel, Javad Mokari;Shafei, Erfan
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.293-302
    • /
    • 2020
  • Connections play a significant role in strength of structures against earthquake-induced loads. According to the post-seismic reports, connection failure is a cause of overall failure in reinforced concrete (RC) structures. Connection failure results in a sudden increase in inter-story drift, followed by early and progressive failure across the entire structure. This article investigated the cyclic performance and behavioral improvement of shape-memory alloy-based connections (SMA-based connections). The novelty of the present work is focused on the effect of shape memory alloy bars is damage reduction, strain recoverability, and cracking distribution of the stated material in RC moment frames under seismic loads using 3D nonlinear static analyses. The present numerical study was verified using two experimental connections. Then, the performance of connections was studied using 14 models with different reinforcement details on a scale of 3:4. The response parameters under study included moment-rotation, secant stiffness, energy dissipation, strain of bar, and moment-curvature of the connection. The connections were simulated using LS-DYNA environment. The models with longitudinal SMA-based bars, as the main bars, could eliminate residual plastic rotations and thus reduce the demand for post-earthquake structural repairs. The flag-shaped stress-strain curve of SMA-based materials resulted in a very slight residual drift in such connections.

Behavioral trends of shear strengthened reinforced concrete beams with externally bonded fiber-reinforced polymer

  • Barakat, Samer;Al-Toubat, Salah;Leblouba, Moussa;Burai, Eman Al
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.579-589
    • /
    • 2019
  • Numerous experimental studies have been conducted on reinforced concrete (RC) beams strengthened in shear with externally bonded fiber reinforced polymer (EBFRP). The objectives of this work are to study the behavioral trends of shear strengthened EBFRP RC beams after updating the existing database. The previously published databases have been updated, enriched and cross checked for completeness, redundancy and consistency. The updated database now contains data on 698 EBFRP beams and covers the time span from 1992 to 2018. The collected database then refined applying certain filters and used to investigate and capture better interactions among various influencing parameters affecting the shear strength of EBFRP beams. These parameters include the type and properties of FRP, fiber orientation as well as the strengthening scheme, the shear and the longitudinal steel reinforcement ratios, the shear span ratio, and the geometry of the member. The refined database is used to test the prediction accuracy of the existing design models. Considerable scatters are found in the results of all tested prediction models and in many occasions the predictions are unsafe. To better understand the shear behavior of the EBFRP RC beams and then enhance the prediction models, it was concluded that focused experimental programs should be carried out.

Effect of Freezing and Thawing on Adhesion of Cement Concrete with Coarse-sand Coated FRP (규사코팅 FRP와 콘크리트 부착특성에 동결융해가 미치는 영향)

  • Lee, Gyu Phil;Park, Kwang Phil;Hwang, Jae Hong;Kim, Dong Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • As fiber reinforced polymer (FRP) material is appled for a curved structure such as tunnel, FRP material must has a curved shape. Until now, the curved FRP material has been producted by hand-lay-up or filament winding work. It is impossible for mass production of the curved FRP material by these methods. Also, the quality of product by these methods is lower than that by pultrusion method. New pultrusion method and equipment had been developed for production of FRP material with steady curvature. The objective of this study is to evaluate the effect of freezing and thawing on adhesion of cement concrete with coarse-sand coated FRP in repair and reinforcement of cement-concrete structure using curved FRP material.

Performance evaluation of a seismic retrofitted R.C. precast industrial building

  • Nastri, Elide;Vergato, Mariacristina;Latour, Massimo
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • Recent seismic events occurred in Italy (Emilia-Romagna 2012, Abruzzo 2009) and worldwide (New Zealand 2010 and 2011) highlighted some of the weaknesses of precast concrete industrial buildings, especially those related to the connecting systems traditionally employed to fasten the cladding panels to the internal framing. In fact, one of the most commons fails it is possible to observe in such structural typologies is related to the out-of-plane collapse of the external walls due to the unsatisfactory behaviour of the connectors used to join the panels to the perimeter beams. In this work, the strengthening of a traditional industrial building, assumed as a case study, made by precast reinforced concrete is proposed by the adoption of a dual system allowing the reinforcement of the structure by acting both internally; by pendular columns and, externally, on the walls. In particular, traditional connections at the top of the walls are substituted by devices able to work as a slider with vertical axis while, the bottom of the walls is equipped with two or more hysteretic dampers working on the uplift of the cladding panels occurring under seismic actions. By means of this approach, the structure is stiffened; obtaining a reduction of the lateral drifts under serviceability limit states. In addition, its seismic behaviour is improved due to the additional source of energy dissipation represented by the dampers located at the base of the walls. The effectiveness of the suggested retrofitting approach has been checked by comparing the performance of the retrofitted structure with those of the structure unreinforced by means of both pushover and Incremental Dynamic Analyses (IDA) in terms of behaviour factor, assumed as a measure of the ductility capacity of the structure.

A Study on the Shape of Beam Attached CFT inner-side for Developing Column's Performance (콘크리트충전 강관기둥의 성능향상을 위한 내면부착 beam의 형상 연구)

  • Lee, Dong-Un;Yun, Hyug-Gee;Kim, Dea-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.21-22
    • /
    • 2015
  • The CFT(Concrete Filled Tube) system has been developed to behave well in a structural performance such as stiffness, stress, ductility, fire resistance that is derived from its mechanical advantages of composite structure. There were number of studies about unprotected CFT columns for improving their fire resistance through reinforcing bars or plates being placed inside the steel tube. It was also known that reinforcing plates of flat type need stiffeners in a certain distance to avoid their buckling failure so it cost as much as their using consequentially. This paper is planned to test the work of beam elements attached inner side of CFT depending on its shape. More discussions on beam's design could be followed after some fire tests accordingly conducted within this project.

  • PDF