• Title/Summary/Keyword: Reinforcement Performance

Search Result 1,713, Processing Time 0.025 seconds

Retrofitted built-up steel angle members for enhancing bearing capacity of latticed towers: Experiment

  • Wang, Jian-Tao;Wu, Xiao-Hong;Yang, Bin;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.681-695
    • /
    • 2021
  • Many existing transmission or communication towers designed several decades ago have undergone nonreversible performance degradation, making it hardly meet the additional requirements from upgrades in wind load design codes and extra services of electricity and communication. Therefore, a new-type non-destructive reinforcement method was proposed to reduce the on-site operation of drilling and welding for improving the quality and efficiency of reinforcement. Six built-up steel angle members were tested under compression to examine the reinforcement performance. Subsequently, the cyclic loading test was conducted on a pair of steel angle tower sub-structures to investigate the reinforcement effect, and a simplified prediction method was finally established for calculating the buckling bearing capacity of those new-type retrofitted built-up steel angles. The results indicates that: no apparent difference exists in the initial stiffness for the built-up specimens compared to the unreinforced steel angles; retrofitting the steel angles by single-bolt clamps can guarantee a relatively reasonable reinforcement effect and is suggested for the reduced additional weight and higher construction efficiency; for the substructure test, the latticed substructure retrofitted by the proposed reinforcement method significantly improves the lateral stiffness, the non-deformability and energy dissipation capacity; moreover, an apparent pinching behavior exists in the hysteretic loops, and there is no obvious yield plateau in the skeleton curves; finally, the accuracy validation result indicates that the proposed theoretical model achieves a reasonable agreement with the test results. Accordingly, this study can provide valuable references for the design and application of the non-destructive upgrading project of steel angle towers.

An Performance Evaluation of Seismic Retrofitted Column Using FRP Composite Reinforcement for Rapid Retrofitting (긴급시공이 가능한 FRP 복합재료 보강재로 보강된 기둥의 내진성능평가)

  • Kim, Jin-Sup;Seo, Hyun-Su;Lim, Jeong-Hee;Kwon, Min-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • As increasing number of large-size earthquake around Korean peninsula, many interests have been focused to the earthquake strengthening of existing structures. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. In the past, cross-sectional extension method, a steel plate reinforcing method and fiver-reinforced method are applied to Seismic Rehabilitation Technique mainly. However, the reinforcement methods have drawbacks that induce physical damage to structures, large space, long duration time. So, in this study, performance evaluation of previously developed FRP seismic reinforcement which do not induce physical damage and short duration time was enforced. The specimens were constructed with 80% downscale. FRP seismic reinforcement are manufactured of glass fiber or aluminum plate with holes and glass fiber. From the experiment results, seismic performance of specimens which reinforced with FRP seismic reinforcement were increased.

Load transfer test of circular anchorage system according to ETAG 013 (ETAG 013 규정에 따른 원형 정착구의 하중전달실험)

  • Kim, Bum-Joon;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.167-175
    • /
    • 2018
  • Load transfer experiments have been carried out to evaluate the performance of the anchorage and it has been stated that the specimens were manufactured and tested according to ETAG 013. On the other hand, the amount of spiral reinforcement and auxiliary reinforcement exceeded the amount specified in ETAG 013. In this study, the load transfer test method and the criteria specified in ETAG 013 were considered and the PT anchorage system was applied to manufacture specimens with high strength concrete and a high tensile prestressing strand. A load transfer test according to ETAG 013 was performed to evaluate the performance of the circular anchorage. As a result, it was confirmed that ETAG 013 is a very strict specification that does not satisfy the performance of an anchorage unless the specimens of an appropriate size and spiral reinforcement are used. To assess the stability of the specimens, increasing the size of the specimen by 15%, rather than increasing the amount of auxiliary reinforcement, is considered to be the correct method in accordance with ETAG 013.

Seismic performances of RC columns reinforced with screw ribbed reinforcements connected by mechanical splice

  • Lee, Se-Jung;Lee, Deuck Hang;Kim, Kang Su;Oh, Jae-Yuel;Park, Min-Kook;Yang, Il-Seung
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.131-149
    • /
    • 2013
  • Various types of reinforcement splicing methods have been developed and implemented in reinforced concrete construction projects for achieving the continuity of reinforcements. Due to the complicated reinforcement arrangements and the difficulties in securing bar spacing, the traditional lap splicing method, which has been widely used in reinforced concrete constructions, often shows low constructability and difficulties in quality control. Also, lap spliced regions are likely to be over-reinforced, which may not be desirable in seismic design. On the other hand, mechanical splicing methods can offer simple and clear arrangements of reinforcement. In order to utilize the couplers for the ribbed-deformed bars, however, additional screw processing at the ends of reinforcing bars is typically required, which often lead to performance degradations of reinforced concrete members due to the lack of workmanship in screw processing or in adjusting the length of reinforcing bars. On the contrary, the use of screw-ribbed reinforcements can easily solve these issues on the mechanical splicing methods, because it does not require the screw process on the bar. In this study, the mechanical coupler suitable for the screw-ribbed reinforcements has been developed, in which any gap between the reinforcements and sleeve device can be removed by grouting high-flow inorganic mortar. This study presents the uniaxial tension tests on the screw-ribbed reinforcement with the mechanical sleeve devices and the cyclic loading tests on RC columns with the developed coupler. The test results show that the mechanical sleeve connection developed in this study has an excellent splicing performance, and that it is applicable to reinforced concrete columns with a proper confinement by hoop reinforcement.

Seismic Performance of Special Shear Wall with the Different Hoop Reinforcement Detail and Spacing in the Boundary Element (경계요소 횡보강근의 상세와 배근간격에 따른 특수전단벽의 내진성능)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • This paper presents experimental results on detailing of boundary element transverse reinforcement, proposed to alleviate placement detailing of special shear wall experiencing difficulty in construction at the sites due to recently reinforced seismic regulations, according to the type and placement interval of transverse reinforcement. As a result of experiment, crack and destruction aspects of SSWR series specimen that employed the proposed detailing of transverse reinforcement showed similar trend as SSW series specimen that used closed hoop. Predicted maximum strength values were exceeded. Also as a result of comparing energy dissipation ability, SSWR2 specimen that follows alleviated placement detailing was found to have similar seismic performance as special shear wall SSW2 specimen based on the existing design standard. As it satisfies the deformation angle condition of 1.5% provided in the design standard, SSWR2 can be used as the main lateral force resistance element in structures.

Seismic Evaluation of RC Special Shear Wall with Improved Reinforcement Details in Boundary Elements (경계요소의 횡보강근 상세를 개선한 RC 특수전단벽의 내진성능 평가)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.3 no.2
    • /
    • pp.195-202
    • /
    • 2012
  • This paper summarizes the seismic performance of two shear walls with different reinforcement details in boundary elements. One is a special shear wall designed by KBC2009 and the other is a shear wall with improved reinforcement details in boundary elements, which is a newly proposed type of special shear wall. Experimental tests under cyclic reversed loading were carried out with two 2/3 scale shear walls which were modelled from the lower part of seismic-resisting shear wall in 22-stories wall-slab apartment building. The experimental results show that seismic performance of shear wall with improved reinforcement details was almost similar to that of special shear wall with respect to the moment-drift ratio. However, energy dissipation capacity and ductility were slightly different. Also, shear wall with improved reinforcement details in boundary elements satisfied the inter-story drift limit of 1.5% from KBC2009.

Finite Element Analysis of Exterior R.C. Beam-Column Joints Containing Headed Bars utilized for Enhanced Seismic Performance (Headed bar를 사용한 외부 철근 콘크리트 보-기둥 접합부의 강화된 내진 성능에 대한 유한요소해석)

  • Bang, Suk;Lee, Joo-Ha;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.506-509
    • /
    • 2004
  • This paper proposes Headed bar as reinforcement of beam-column joint, and proves seismic performance and reduction of reinforcement congestion. In these case, the use of Headed bars have obvious advantages. The greatest benefit of using Headed bars is not only improved structural performance of beam-column joints, but also the ease of fabrication, construction, and placement. Three-dimensional finite element analysis model is compared with test program which was fulfilled by the proposed model with Headed bar. Also, the plastic hinge region is relocated to the center of the longitudinal beam length according to the strong column-weak beam design philosophy, so Headed bar is used as the joint reinforcement. Therefore, this paper presents results of a computer analysis of a practical solution for relocating potential beam plastic hinge regions by the placing of straight - Headed bar.

  • PDF

Intrinsic Motivation as a factor Affecting Exertion in Purposeful versus Nonpurposeful Activity (목적있는 활동과 목적없는 활동간의 내적 동기화에 관한 연구)

  • Ahn, Duk-Hyun
    • Physical Therapy Korea
    • /
    • v.1 no.1
    • /
    • pp.25-34
    • /
    • 1994
  • This study investigated the hypothesis that purposeful activity is an intrinsic motivator. Affecting exertion during the performance of purposeful and nonpurposeful activity was studied in 30 elementary school students. The subjects acted as their own controls in the performance of other exercise. The three experimental exercises were jumping rope, defined as a nonpurposeful activity, and jumping rope with reinforcement, defined as purposeful activity I, and jumping rope with double reinforcement (food), defined as purposeful activity II. Duration and cessation of exercise were entirely controlled by the subject. The number of jumps were measured immediately after cessation of exercise and duration of exercise in seconds by observer. The results were as follows : 1. There was a significant difference in the required time of performance between purposeful and nonpurposeful jumping (p< .05). 2. There was a significant difference in the number of jumps between nonpurposeful and nonpurposeful jumping after reinforcement. (p< .05). Implications for practice and further research are discussed.

  • PDF

Effects of Replacement Ratio of Recycled Coarse Aggregate on the Shear Performance of Reinforced Concrete Beams without Shear Reinforcement

  • Yun, Hyun-Do;You, Young-Chan;Lee, Do-Heon
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.471-477
    • /
    • 2011
  • This paper will describe the experimental results on the shear behaviors of reinforced concrete (RC) beam with recycled coarse aggregate (RCA). The primary objective of this research is to evaluate the influences of different RCA replacement percentage (i.e, 0%, 30%, 60%, and 100%) on the shear performance of reinforced concrete beams without shear reinforcement. Eight large-scale RC beams without shear reinforcement were manufactured and tested to shear failure. All had a rectangular cross-section with 400mm width ${\times}$ 600mm depth and 6000mm length, and were tested with a shear span-to-depth of 5.1. The results showed that the deflection and shear strength were little affected by the different RCA replacement percentage. Actual shear strength of each RCA beam was compared with the shear strength predicted using the provisions of ACI 318 code and Zsutty'e equation for shear design of RC beams. ACI 318 code predicted the shear strength of RCA reinforced concrete beams well.

Restoration of pre-damaged RC bridge columns using basalt FRP composites

  • Fahmy, Mohamed F.M.;Wu, Zhishen
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2018
  • This study aims to identify the effect of both longitudinal reinforcement details and damage level on making a decision of repairing pre-damaged bridge columns using basalt fiber reinforced polymer (BFRP) jackets. Two RC bridge columns with improper details of the longitudinal and/or transverse reinforcement were tested under the effect of a constant axial load and increasing lateral cyclic loading. Test results showed that the lap-splice column exhibited an inferior performance where it showed rapid degradation of strength before achieving the theoretical strength and its deformation capacity was limited; however, quick restoration is possible through a suitable rehabilitation technique. On the other hand, expensive repair or even complete replacement could be the decision for the column with the confinement failure mode. After that, a rehabilitation technique using external BFRP jacket was adopted. Performance-based design details guaranteeing the enhancement in the inelastic performance of both damaged columns were addressed and defined. Test results of the repaired columns confirmed that both reparability and the required repairing time of damage structures are dependent on the reinforcement details at the plastic hinge zone. Furthermore, lap-splice of longitudinal reinforcement could be applied as a key design-tool controlling reparability and restorability of RC structures after massive actions.