• 제목/요약/키워드: Reinforcement Learning from Human Feedback(RLHF)

검색결과 3건 처리시간 0.017초

인간 피드백 기반 강화학습 (RLHF)에서 보상 모델의 효과적인 훈련 방법에 관한 연구 (A Study about Efficient Method for Training the Reward Model in RLHF)

  • 김정욱;;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.245-250
    • /
    • 2023
  • RLHF(Reinforcement Learning from Human Feedback, 인간 피드백 기반 강화학습) 방법론이 최근 고성능 언어 모델에 많이 적용되고 있다. 이 방법은 보상 모델과 사람의 피드백을 활용하여 언어 모델로 하여금 사람이 선호할 가능성이 높은 응답을 생성하도록 한다. 하지만 상업용 언어 모델에 적용된 RLHF의 경우 구현 방법에 대하여 정확히 밝히고 있지 않다. 특히 강화학습에서 환경(environment)을 담당하는 보상 모델을 어떻게 설정하는지가 가장 중요하지만 그 부분에 대하여 오픈소스 모델들의 구현은 각각 다른 실정이다. 본 연구에서는 보상 모델을 훈련하는 큰 두 가지 갈래인 '순위 기반 훈련 방법'과 '분류 기반 훈련 방법'에 대하여 어떤 방법이 더 효율적인지 실험한다. 또한 실험 결과 분석을 근거로 효율성의 차이가 나는 이유에 대하여 추정한다.

  • PDF

챗GPT 등장 이후 인공지능 환각 연구의 문헌 검토: 아카이브(arXiv)의 논문을 중심으로 (Literature Review of AI Hallucination Research Since the Advent of ChatGPT: Focusing on Papers from arXiv)

  • 박대민;이한종
    • 정보화정책
    • /
    • 제31권2호
    • /
    • pp.3-38
    • /
    • 2024
  • 환각은 대형언어모형이나 대형 멀티모달 모형의 활용을 막는 큰 장벽이다. 본 연구에서는 최신 환각 연구 동향을 살펴보기 위해 챗 GPT 등장 이후인 2022년 12월부터 2024년 1월까지 아카이브(arXiv)에서 초록에 '환각'이 포함된 컴퓨터과학 분야 논문 654건을 수집해 빈도분석, 지식연결망 분석, 문헌 검토를 수행했다. 이를 통해 분야별 주요 저자, 주요 키워드, 주요 분야, 분야 간 관계를 분석했다. 분석 결과 '계산 및 언어'와 '인공지능', '컴퓨터비전 및 패턴인식', '기계학습' 분야의 연구가 활발했다. 이어 4개 주요 분야 연구 동향을 주요 저자를 중심으로 데이터 측면, 환각 탐지 측면, 환각 완화 측면으로 나눠 살펴보았다. 주요 연구 동향으로는 지도식 미세조정(SFT)과 인간 피드백 기반 강화학습(RLHF)을 통한 환각 완화, 생각의 체인(CoT) 등 추론 강화, 자동화와 인간 개입의 병행, 멀티모달 AI의 환각 완화에 대한 관심 증가 등을 들 수 있다. 본 연구는 환각 연구 최신 동향을 파악함으로써 공학계는 물론 인문사회계 후속 연구의 토대가 될 것으로 기대한다.

ChatGPT을 활용한 디지털회로 설계 능력에 대한 비교 분석 (Comparative analysis of the digital circuit designing ability of ChatGPT)

  • 남기훈
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.967-971
    • /
    • 2023
  • 최근에는 다양한 플랫폼 서비스가 인공지능을 활용하여 제공되고 있으며, 그 중 하나로 ChatGPT는 대량의 데이터를 자연어 처리하여 자가 학습 후 답변을 생성하는 역할을 수행하고 있다. ChatGPT는 IT 분야에서 소프트웨어 프로그래밍 분야를 포함하여 다양한 작업을 수행할 수 있는데, 특히 프로그램을 대표하는 C언어를 통해 간단한 프로그램을 생성하고 에러를 수정하는데 도움을 줄 수 있다. 이러한 능력을 토대로 C언어를 기반으로 만들어진 하드웨어 언어인 베릴로그 HDL도 ChatGPT에서 원활한 생성이 예상되지만, 베릴로그 HDL의 합성은 명령문들을 논리회로 구조 형태로 생성하는 것이기에 결과물들의 정상적인 실행 여부를 확인해야 한다. 본 논문에서는 용이한 실험을 위해 규모가 적은 논리회로들을 선택하여 ChatGPT에서 생성된 디지털회로와 인간이 만든 회로들의 결과를 확인하려 한다. 실험 환경은 Xilinx ISE 14.7로 모듈들을 모델링하였으며 xc3s1000 FPGA칩을 사용하여 구현하였다. 구현된 결과물을 FPGA의 사용 면적과 처리 시간을 각각 비교 분석함으로써 ChatGPT의 생성물과 베릴로그 HDL의 생성물의 성능을 비교하였다.