• Title/Summary/Keyword: Reinforcement Effects

Search Result 996, Processing Time 0.027 seconds

Effects of Shear Span-to-depth Ratio and Tensile Longitudinal Reinforcement Ratio on Minimum Shear Reinforcement Ratio of RC Beams (전단경간비와 주인장철근비가 철근콘크리트 보의 최소전단철근비에 미치는 영향)

  • Lee Jung-Yoon;Kim Wook-Yeon;Kim Sang-Woo;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.795-803
    • /
    • 2004
  • To prevent the shear failure that occurs abruptly with no sufficient warning, the minimum amount of shear reinforcement should be provided to reinforced concrete(RC) beams. The minimum amount of shear reinforcement of RC beams is influenced by not only compressive strength of concrete but also shear span-to-depth ratio and ratio of tensile longitudinal reinforcement. In this paper, 14 RC beams were tested in order to observe the influences of shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, and compressive strength of concrete. The test results indicated that the rate of shear strength to the diagonal cracking strength of RC beams with the same amount of shear reinforcement increased as the ratio of tensile longitudinal reinforcement increased, while it decreased as the shear span-to-depth ratio increased. The observed test results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation.

Maximum Shear Reinforcement of RC Beams using High Strength Concrete (고강도 콘크리트를 사용한 RC보의 최대철근비)

  • Lee, Jung-Yoon;Hwang, Hyun-Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.839-842
    • /
    • 2008
  • The ACI 318-05 code requires the maximum amount of shear reinforcement in reinforced concrete (RC) beams to prevent possible sudden shear failure due to over reinforcement. The design equations of the maximum amount of shear reinforcement provided by the current four design codes, ACI 318-05, CSA-04, EC2-02, and JCI-99, differ substantially from one another. The ACI 318-05, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take into account the influence of the concrete compressive strength. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-05. This paper presents the effects of shear reinforcement ratio and compressive strength of concrete on the maximum shear reinforcement in reinforced concrete beams. Ten RC beams having various shear reinforcement ratio were tested. Although the test beams were designed to have much more amount of shear reinforcement than that required in the ACI 318-05 code, all beams failed due to web concrete crushing after the stirrups reached the yield strain.

  • PDF

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

An Analytical Study on the Effects of Structural Reinforcement for Laser Multi-tasking Machine (레이저 복합 가공기의 구조보강의 영향 평가에 관한 해석적 연구)

  • Shin, J.H.;Lee, C.M.;Chung, W.J.;Kim, J.S.;Lee, W.C.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.37-43
    • /
    • 2007
  • Recent technological developments in machine tools have been focused on high speed, low vibration machining and high precision machining. And the concern with multi-functional machining has been increased for the last several years. Multi-tasking machines are widely used in machine tool industries. Laser multi-tasking machine has been developed for high precision and fewer vibration machining. The purpose of this study is to evaluate the effects of structural reinforcement on Laser multi-tasking machine which is comprehensively combined turning center and laser machine. Up to date, for the structural stability evaluation of a multi-tasking machine, the analysis model has been considered only the weight of the upper parts. The positions of upper parts on multi-tasking machine have not been considered in the model. So, the results of the present FE model have revealed some difference with measurement data in case of multi-tasking machine. Design of the machine and structural analysis is carried out by FEM simulation using the commercial software CATIA V5. In the result of the structural analysis, effectiveness of reinforcement of the bed was confirmed.

Application of FE approach to deformation analysis of RC elements under direct tension

  • Jakubovskis, Ronaldas;Kupliauskas, Rimantas;Rimkus, Arvydas;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.345-358
    • /
    • 2018
  • Heterogeneous structure and, particularly, low resistance to tension stresses leads to different mechanical properties of the concrete in different loading situations. To solve this problem, the tension zone of concrete elements is reinforced. Development of the cracks, however, becomes even more complicated in the presence of bar reinforcement. Direct tension test is the common layout for analyzing mechanical properties of reinforced concrete. This study investigates scatter of the test results related with arrangement of bar reinforcement. It employs results of six elements with square $60{\times}60mm$ cross-section reinforced with one or four 5 mm bars. Differently to the common research practice (limited to the average deformation response), this study presents recordings of numerous strain gauges, which allows to monitor/assess evolution of the deformations during the test. A simple procedure for variation assessment of elasticity modulus of the concrete is proposed. The variation analysis reveals different deformation behavior of the concrete in the prisms with different distribution of the reinforcement bars. Application of finite element approach to carefully collected experimental data has revealed the effects, which were neglected during the test results interpretation stage.

Structural response of corroded RC beams: a comprehensive damage approach

  • Finozzi, Irene Barbara Nina;Berto, Luisa;Saetta, Anna
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.411-436
    • /
    • 2015
  • In this work, a comprehensive approach to model the structural behaviour of Reinforced Concrete (RC) beams subjected to reinforcement corrosion is proposed. The coupled environmental - mechanical damage model developed by some of the authors is enhanced for considering the main effects of corrosion on concrete, on composite interaction between reinforcement bars and concrete and on steel reinforcement. This approach is adopted for reproducing a set of experimental tests on RC beams with different corrosion degrees. After the simulation of the sound beams, the main parameters involved in the relationships characterizing the effects of corrosion are calibrated and tested, referring to one degraded beam. Then, in order to validate the proposed approach and to assess its ability to predict the structural response of deteriorated elements, several corroded beams are analyzed. The numerical results show a good agreement with the experimental ones: in particular, the proposed model properly predicts the structural response in terms of both failure mode and load-deflection curves, with increasing corrosion level.

Effects of viscous damping models on a single-layer latticed dome during earthquakes

  • Zhang, Huidong;Wang, Jinpeng;Zhang, Xiaoshuai;Liu, Guoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.455-464
    • /
    • 2017
  • Rayleigh damping model is recommended in the recently developed Performance-Based Earthquake Engineering (PBEE) methodology, but this methodology does not provide sufficient information due to the complexity of the damping mechanism. Furthermore, each Rayleigh-type damping model may have its individual limitations. In this study, Rayleigh-type damping models that are used widely in engineering practice are discussed. The seismic performance of a large-span single-layer latticed dome subjected to earthquake ground motions is investigated using different Rayleigh damping models. Herein a simulation technique is developed considering low cycle fatigue (LCF) in steel material. In the simulation technique, Ramberg-Osgood steel material model with the low cycle fatigue effect is used to simulate the non-uniformly distributed material damping and low cycle fatigue damage in the structure. Subsequently, the damping forces of the structure generated by different damping models are compared and discussed; the effects of the damping ratio and roof load on the damping forces are evaluated. Finally, the low cycle fatigue damage values in sections of members are given using these damping models. Through a comparative analysis, an appropriate Rayleigh-type damping model used for a large span single-layer latticed dome subjected to earthquake ground motions is determined in terms of the existing damping models.

Experimental investigations on seismic responses of RC circular column piers in curved bridges

  • Jiao, Chiyu;Li, Jianzhong;Wei, Biao;Long, Peiheng;Xu, Yan
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • The collapses of curved bridges are mainly caused by the damaged columns, subjected to the combined loadings of axial load, shear force, flexural moment and torsional moment, under earthquakes. However, these combined loadings have not been fully investigated. This paper firstly investigated the mechanical characteristics of the bending-torsion coupling effects, based on the seismic response spectrum analysis of 24 curved bridge models. And then 9 reinforced concrete (RC) and circular column specimens were tested, by changing the bending-tortion ratio (M/T), axial compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratio, respectively. The results show that the bending-torsion coupling effects of piers are more significant, along with the decrease of girder curvature and the increase of pier height. The M/T ratio ranges from 6 to 15 for common cases, and influences the crack distribution, plastic zone and hysteretic curve of piers. And these seismic characteristics are also influenced by the compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratios of piers.

An experimental study of the effects of Husband s supportive behavior reinforcement education on stress relief of primigravidas (초임부의 스트레스감소에 미치는 지지강화교육의 효과에 관한 실험적 연구)

  • 안황란
    • Journal of Korean Academy of Nursing
    • /
    • v.15 no.1
    • /
    • pp.5-16
    • /
    • 1985
  • This study examined the effects of husband's supportive behavior reinforcement education on stress relief of primigravidas. The purpose was to reinforce husbands' supportive behavior and relieve primigravidas' stress. The purposes of this study were to determine lactors influencing Primigravidas' stress and the effect of husbands' supportive behavior reinforcement education on stress relief of primigravidas. The subjects, consisting of 140 primigravidas who registered or visited in three obstetrics and gynecology clinics in J city, were divided into at random experimental and control groups. Data were collectpe from April To July, 1984 through interviews during hospital visits, and by questionaires. The husbands' supportive behavior reinforcement education and the measurement tools were developed by the investigator from the literature and during pilot study: the instruments to measure primigravidas' stress and husbands' supportive behavior were tested for reliability and validity. Personality characteristisc were measured by Chestnuts' Stress Management instrument. T-test, ANOVA, ω², and Pearson Correlation were used in analysing the data to confirm the intensity of the influence and the relation between general characteristics and primigravidas' stress. Pearson correlation and Stepwise Multiple Regression were used to confirm the predictors of primigravidas' stress. Independent variables were compared by means of t-test and χ³-test to confirm significant discrepancy of experimental and control groups. T-test, paired t-test, pearson correlation were used in analyzing the data to confirm the effect of husband's supportive behavior reinforcement education on stress relief of primigravidas. The results of the study are summarized. Results from analyzing the effect of husbands' supportive behavior reinforcement education: There was no significant difference between the general characteristics of the experimental and control groups. And husbands' supportive behavior, personality, marital Satisfaction, natural abortion variables influenced at primigravidas' stress. A hypothetical test by comparative analysis of the measurement of primigravidas' stress and husbands' support behavior between the experimental and the control group before and after the experiment to confirm the effect of husbands' supportive behavior reinforcement education resulted in the following: The first hypothesis that husbands' supportive behavior reinforcement education will increase husbands' support behavior to relieve primigravidas' stress was supported. The second hypothesis that husbands' supportive behavior reinforcement education will relieve primigravidas' stress was supported. As a result, it u·as shown that husbands' supportive behavior reinforcement education relieved primigravidas' stress, and the hypotheses were supported. The third hypothesis that the higher the degree of husbands' supportive behavior, the lower the primigravidas' stress was supported. It was concluded that husbands' supportive behavior reinforcemen education increase husbands' supportive behavior and relieves Primigravidas' stress.

  • PDF

The Implication of Bandura's Vicarious Reinforcement in Observational Learning for Christian Education (관찰학습에서의 반두라 대리강화에 대한 기독교교육적 함의)

  • Lee, Jongmin
    • Journal of Christian Education in Korea
    • /
    • v.61
    • /
    • pp.81-107
    • /
    • 2020
  • This study reviews Bandura's vicarious reinforcement in observational learning process and implies this concept into Christian education in terms of spiritual role modeling. The first part of this study answers three questions: "what is vicarious reinforcement?" "how does vicarious reinforcement take place in observational learning?" and "how does vicarious reinforcement affect observer's behavior change?" Bandura conceptualizes the learning process with observational learning and imitative or non-imitative performance. Based on this concept, Bandura define the roles of vicarious reinforcement in the four steps of observational learning process: attention, retention, motor reproduction, and motivational process. Also, the three effects of vicarious reinforcements are explained in the following categories: the observational learning effect, inhibitory or disinhibitory effects, and eliciting effect. Adapting the structure of observational learning theory in terms of the effect of vicarious reinforcement and the function of role models, the second part of this study examines the biblical concept of imitation of Christ and the modeling strategy of discipleship. Especially Paul's spiritual role model serves as positive vicarious reinforcement for the Christian believers to perform the desired behaviors. Also, Paul's condemnation serves as explicit negative vicarious reinforcement. Then, the last part of this study covers the implication of these findings from observational learning and empirical studies in terms of spiritual role modeling to Christian education.