• Title/Summary/Keyword: Reinforced Resin

Search Result 513, Processing Time 0.03 seconds

Impact Fracture Behavior of Toughened Epoxy Resin Applied Carbon Fiber Reinforced Composites (Toughened 에폭시 수지를 사용한 탄소 섬유강화 복합재료의 충격파괴 거동)

  • 이정훈;황승철;김민영;김원호;황병선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.111-114
    • /
    • 2003
  • Thermosets are highly cross-linked polymers with a three-dimensional molecular structure. The network structure gives rise to mechanical properties, however, one major drawback of thermosets, which also results from their network structure, is their poor resistance to impact and to crack initiation. In this study, to solve this problem, the reactive thermoplastics such as amine terminated polyetherimide (ATPEI), ATPEI-CTBN-ATPEI(ABA) triblock copolymer, CTBN-ATPEI(AB) diblock copolymer, and carboxyl group modified ATPEI was synthesized, after that blended with epoxy resin, and the carbon fiber reinforced composites were fabricated. The impact load, energy, and delamination were investigated by using drop weight impact test and C-scan test. As a results, the ABA/epoxy blend system showed good impact properties.

  • PDF

A Study on the Flexural Capacity of Wooden Member According to the Reinforcement Ratio of Synthetic Resin (합성수지의 보강비율에 따른 목재의 휨 보강 성능에 관한 연구)

  • Kang, Ho-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • Most of the cultural assets in Korea are wooden structures. Due to the material characteristics of wood, the preservation of traditional wooden structure is impossible by simple maintenance. Damaged member is replaced with new member or completely dissolve and restore them. But member has a cultural value, so that it is impossible to arbitrarily replace each member. Although the preservation treatment method using synthetic resin is emphasized, there is no exact standard for proper reinforcement ratio. This paper is experimental study for reinforcement ratio of wooden flexural member with synthetic resins, Reinforced ratio on section area of flexural member. As a result, synthetic resin reinforcement are selected as experimental variables by proper ratio enhanced flexural capacity of reinforced wooden member than new wooden member.

Characteristics of Thermal Degradation for Carbon Fiber/Epoxy Composite using Strand Specimen (스트랜드 인장시편을 적용한 탄소섬유/에폭시 복합재의 열화특성 연구)

  • Oh, Jin-Oh;Kil, Hyung-Bae;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.408-410
    • /
    • 2012
  • In this study, High temperature properties of carbon fiber reinforced composites is performed using strand specimens and resin specimens. As for the tensile test at the different temperature, the tensile modulus of resin specimens decreases slightly until the temperature reaches the glass transition temperature. but the tensile modulus of strand specimens maintains tensile modulus at the room temperature. The tensile strength of resin and strand specimens decreases rapidly until the temperature reaches the glass transition temperature.

  • PDF

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

Forming Characteristics with Cavity Pressure and Temperature Signal Inside Mold in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소섬유강화복합소재의 고압수지이송성형공정에서 금형 내 캐비티의 압력 및 온도신호에 따른 성형특성)

  • Han, Beom-Jeong;Jeong, Yong-Chai;Kim, Sung-Ryul;Kim, Ro-Won;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-86
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) process has a very effective for the mass production of carbon fiber reinforced plastic (CFRP) for light weight in the automotive industry. In developing robust equipment, new process and fast cure matrix systems reduces significantly the cycle time less than 5 minutes in recent years. This paper describes the cavity pressure, temperature and molding characteristics of the HP-RTM process. The HP-RTM mold was equipped with two cavity pressure sensors and three temperature sensors. The cavity pressure characteristics of the HP-RTM injection, pressurization, and curing processes were studied. This experiment was conducted with selected process parameters such as mold cap size, maximum press force, and injection volume. Consequently, this monitoring method provides correlations between the selected process parameters and final forming characteristics in this work.

Performance and Feasibility Evaluation of Straight-Type Mixing Head in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소 섬유강화 복합소재의 고압 수지이송 성형공정에서 직선형 믹싱헤드의 성능 및 유용성 평가)

  • Han, Beom Jeong;Jeong, Yong Chai;Hwang, Ki Ha;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-165
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) technology has been commercialized for fast production of fiber reinforced composite materials. The high-pressure mixing head was one of the most core component of the HP-RTM process. In this study, a mixing head was systematically designed, manufactured and evaluated. This mixing head was composed of a nozzle, a mixing chamber, a cleaning piston part, and an internal mold release part. In actual, a straight-type structure was newly designed instead of the conventional L-type structure for improving the maximum mixing pressure and mixing ratio precision. The performance of mixing head was showed maximum mixing pressure of 15.22MPa and mixing ratio precision of 0.12%. CFRP molding experiments were successfully obtained a 6~11 laminating carbon sheet using HP-RTM presses and specimen molds.

The Mixture Ratio Effect of Epoxy Resin, Curing Agent and Accelerator on the Fatigue Behavior of FRMLs (프리프레그 제작용 에폭시 수지.경화제.경화촉진제 혼합비 변화에 따른 FRMLs의 피로거동 특성)

  • Song, Sam-Hong;Kim, Cheol-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.592-601
    • /
    • 2001
  • Fiber reinforced metal laminates(FRMLs) are new types of hybrid materials. FRMLs consists of high strength metal(Al 5052-H34) and laminated fiber with structural adhesive bond. The mixture ratio effect of epoxy resin$.$curing agent$.$accelerator on the fatigue behavior of FRMLs was investigated in this study. The epoxy, diglycidylether of bisphenol A(DGEBA), was cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test ; five kinds of FRMLs(1) and three others of FRMLs(2). The relationship between da/dN and ΔK with variation of resin mixture ratio was studied. FRMLs(1) and FRMLs(2) indicated approximately 2 times and 2.2 times more improved maximum bending strengths in comparison with those of Al 5052-H34. The resin mixture ratio <1:1> in case of FRMLs(1) indicated the maximum fatigue life, while the resin mixture ratio <1:1:0.2> in case of FRMLs(2) indicated the maximum fatigue life. As results, FRMLs(2) turned out to have more effective characteristics on the fatigue properties and the bending strength than those of FRMLs(1).

Effect of particle size on graphite reinforced conductive polymer composites (입자의 크기에 따른 흑연 보강 전도성 고분자 복합재료의 특성 연구)

  • Heo, S.I.;Yun, J.C.;Oh, K.S.;Han, K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.257-260
    • /
    • 2005
  • Graphite reinforced conductive polymer composites were fabricated by the compression molding technique. Graphite powder was mixed with an phenol resin to impart electrical property in composites. The ratio and particle size of graphite powder were varied to investigate electrical conductivity of cured composites. In this study, graphite reinforced conductive polymer composites with high filler loadings(>66wt.%) were manufactured to accomplish high electrical conductivity. With increasing the loading ratio of graphite powder, the electrical conductivity and flexural strength increased. However. above 80wt.% filler loadings, flexural strength decreased due to lack of resin. Regardless of graphite particle size, electrical conductivity wasn’t varied. On the other hand, with decreasing particle size, flexural strength increased due to high specific surface area.

  • PDF

Bending Strength of Natural Woven Bamboo Fiber-reinforced Polymer Composites with Manufacturing Factors (직조된 대나무 자연섬유 복합재료의 제조인자에 따른 굽힘강도)

  • Song Jun-Hee;Lim Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.916-922
    • /
    • 2006
  • In recent years there has been a growing interest for the use of natural fibers in composite applications due to their low cost, environmental friendliness, and good mechanical properties. The purpose of this study is to determine the characteristic of bending strength on bamboo fiber reinforced polymer composites. The parameters of RTM process depend on the weight ratio of bamboo fiber and resin, the number of bamboo ply and amount of hardening agent. Mechanical properties was investigated for each process factor of polymer composites. Test result shows that bending strength was a maximum(approximately 85MPa) value when composite thickness was 6mm and weight ratio of resin was 13%.

Tensile Properties of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates at Low Temperatures (평직유리섬유 강화 에폭시 적층판의 저온 인장 특성)

  • Kim, Yon-Jig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.788-795
    • /
    • 2008
  • To understand the tensile behaviors of GFRP at low temperature, three types of specimen have been used in this study. Tensile properties and fracture mechanisms for three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate were investigated at temperature range of about -30 to $15^{\circ}C$. The tensile properties of axial and edge type specimen decrease slightly with decreasing temperature to $-20^{\circ}C$. However, at $-30^{\circ}C$ the decreases in the tensile properties increased considerably. Below $-20^{\circ}C$, thickness type specimen showed a marked decreases in the tensile properties. It was obvious that the fracture manner of thickness type specimen was adhesive failure at above $-10^{\circ}C$ and a mixed adhesive and cohesive failure at below $-20^{\circ}C$.