• Title/Summary/Keyword: Reindl 모델

Search Result 2, Processing Time 0.014 seconds

Comparative Analysis of Decomposition Models with Site-fitted Coefficients for Seoul (서울지역 지역계수가 적용된 직산분리 모델의 성능 비교)

  • Seo, Dong-Hyun;Kim, Hye-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.91-102
    • /
    • 2019
  • Decomposition models are essential in TMY development and solar energy system design. Up until recently, only a few decomposition model related researches are implemented in Korea due to lack of measured direct normal solar irradiance. In contrast, numerous researches have been conducted in various countries, and some quasi-universal composition models have been recommended by several papers. In this research, three decomposition models - Watanabe model, Reindl-2 model and Engerer1 model - are selected and their site-fitted coefficients are developed using measured direct normal solar irradiance in Seoul. R-squared, RMSE, MBE of the site-fitted models are compared with the case of original coefficients and then each other. The comparison result shows that the Reindl-2 model with site-fitted coefficients is best suitable for Seoul. Further researches will be conducted to find the best model using more various measured data of Korean cities and site-fitting methods.

A Study of Collector Slope Angles for Acquiring Maximum Solar Radiation for Various Periods (최대 일사량 확보를 위한 기간별 집열 경사각 연구)

  • Cho, Yeong-Uk;Kim, Young-Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.492-497
    • /
    • 2011
  • The objective of this research is to study the variation of optimum slope angles of collectors for seven regions in Korea, which are Seoul, Gangneung, Daejeon, Daegu, Gwangju, Busan and Jeju. The results for 2000~2007 are analyzed to sec if adjustment of slope angles is necessary each year to receive maximum solar radiation. For an azimuth fixed solar collector, solar radiation of yearly optimized slope angle during May~Sept.(summer), Nov.~Mar.(winter) and the whole year are greater than the fixed slope angle by 0.03%, 0.02%, and 0.04%, respectively. For an azimuth tracking solar collector, solar radiation of yearly optimized slope angle during May~Sept.(slimmer), Nov.-Mar.(winter) and the whole year are greater than the fixed slope angle by 0.03%, 0.07%, and 0.04% respectively. It is unnecessary to adjust slope angles each year for both azimuth fixed and tracking collectors, since the gains are insignificant. Solar radiation of the azimuth tracking solar collector during May~Sept., Nov.~Mar. and the whole year are greater by 14.7%, 16.0%, and 19.2% than the azimuth fixed solar collector.