• Title/Summary/Keyword: Reheat Loss

Search Result 3, Processing Time 0.014 seconds

Effect of Sulfur Contents and Welding Thermal Cycles on Reheat Cracking Susceptibility in Multi-pass Weld Metal of Fe-36%Ni Alloy

  • Mori, Hiroaki;Nishimoto, Kazutoshi
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.377-379
    • /
    • 2005
  • This study has been conducted to clarify the effect of sulfur content and welding thermal cycles on reheat cracking susceptibility in the multi-pass weld metal of Fe-36%Ni alloy. Reheat cracking occurred in the preceding weld pass reheated by subsequent passes. Microscopic observations showed that reheat cracking propagated along grain boundaries which resulted in intergranular brittle fractures. The region where reheat cracking occurred and the number of cracks increased with the increase in sulfur content of the alloys. These experimental results suggested that reheat cracking was associated with the embrittlement of grain boundaries, which was promoted by sulfur and subsequent welding thermal cycles. AES analysis indicated that the sulfur segregation occurred at grain boundaries in the reheated weld metal. On the basis of these results, the cause of reheat cracking in multi-pass welding can be attributed to hot ductility loss of weld metals due to sulfur segregation which was accelerated by the reheating with multi-pass welding thermal cycles.

  • PDF

Analysis on the Regenerator Characteristics for a Vuilleumier Heat Pump (Vuilleumier열펌프용 재생기 특성 해석)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1572-1583
    • /
    • 1993
  • This paper deals with the analysis method of regenerator characteristics for designing a vuilleumier heat pump. First, models for evaluating the reheat and the flow losses are established by the comparative study between already proposed ones. Calculations based on the second-order method are performed for the well-known schulz heat pump. Results show that operating conditions as well as design parameters significantly affect the regenerator performances. The effects of operating conditions on the reheat and the flow losses appear to be similar in trends in both the hot-warm and the cold-warm regenerators. However, the losses in the one regenerator vary oppositely to those in the other with specific design parameters such as the phase angle and the swept volume ratio being changed. Also, it is confirmed that there is an optimum aspect ratio(D/L) which minimizes total loss for each regenerator.

A Second-Order Analysis of VM Heat Pumps (VM열펌프의 2차해석)

  • Choi, Y.S.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.208-218
    • /
    • 1996
  • Performance of a VM heat pump is considerably affected by various losses, such as enthalpy dump, reheat loss, pumping loss, conduction loss and shuttle loss. A second-order analysis model of VM heat pumps, which allows consideration of the major losses, was presented. Actual heat transfer rates for heat exchangers were calculated from the heat transfer rates obtained by the adiabatic analysis and various losses. New effective temperatures of heat exchangers were calculated from the actual heat transfer rates and the mean heat transfer coefficients until there was no appreciable change in the effective temperatures. Effects of design parameters, such as phase angle, swept volume ratio, regenerator length and speed on heating capacity, cooling capacity and COP were shown.

  • PDF