• Title/Summary/Keyword: Rehabilitation Device

Search Result 430, Processing Time 0.03 seconds

Factors affecting real-time evaluation of muscle function in smart rehab systems

  • Hyunwoo Joe;Hyunsuk Kim;Seung-Jun Lee;Tae Sung Park;Myung-Jun Shin;Lee Hooman;Daesub Yoon;Woojin Kim
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.603-614
    • /
    • 2023
  • Advancements in remote medical technologies and smart devices have led to expectations of contactless rehabilitation. Conventionally, rehabilitation requires clinicians to perform routine muscle function assessments with patients. However, assessment results are difficult to cross-reference owing to the lack of a gold standard. Thus, the application of remote smart rehabilitation systems is significantly hindered. This study analyzes the factors affecting the real-time evaluation of muscle function based on biometric sensor data so that we can provide a basis for a remote system. We acquired real clinical stroke patient data to identify the meaningful features associated with normal and abnormal musculature. We provide a system based on these emerging features that assesses muscle functionality in real time via streamed biometric signal data. A system view based on the amount of data, data processing speed, and feature proportions is provided to support the production of a rudimentary remote smart rehabilitation system.

Virtual Home Training - Virtual Reality Small Scale Rehabilitation System (가상 홈 트레이닝 - 가상현실 기반 소근육 재활 시스템)

  • Yu, Gyeongho;Kim, Hae-Ji;Kim, Han-Seob;Lee, Jieun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.93-100
    • /
    • 2018
  • This paper proposes a small-scale rehabilitation system that allows stroke patients to perform daily rehabilitation training in a virtual home. Stroke patients have limited activities of daily living due to paralysis, and there are many rehabilitation exercises for them to reproduce activities that take place in the house, such as turning lights on and off, door opening and closing, gas valve locking. In this paper, we have implemented a virtual home with the above mentioned daily rehabilitation training elements, by using virtual reality technology. We use Leap Motion, a hand motion recognition device, for rehabilitation of hands and fingers. It is expected that stroke patients can rehabilitate small muscles without having to visit the clinic with uncomfortable body, and will be able to get interesting rehabilitation training by avoiding monotony of existing rehabilitation tools.

About the Necessity for Development of Autonomous Mobility Device for Children with Severe Developmental Retardation

  • Matsuo, Kiyomi;Murata, Tomoyuki;Koga, Takanori;Kubo, Atsuko;Yoshida, Yuichi;Karakawa, Yosuke;Kawaguchi, Hiroshi;Tanaka, Toru;Masaki, Jun;Taketomi, Toshikatsu;Kitajima, Takeo
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • In this paper, I will report the cases of children who are able to study at kindergarten or elementary school because they learned how to move by themselves using a moving aid before school age, and I will also discuss the development of a mobility device which allows severely disabled preschoolers to practice moving around by themselves safely and easily at home and institutions.

  • PDF

Object Search Using Synchronous Ultrasonic Wave Emission for the Blind Guide system (시각장애인 안내 시스템을 위한 복수 초음파센서 동시 조사에 의한 장애물 검색)

  • Kim, Chang-Geol;Song, Byung-Seop
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.384-391
    • /
    • 2008
  • For use in the guide system for the people who are visually impaired, an obstacle searching device using synchronous ultrasonic wave emission was proposed and developed. Generally, the conventional obstacle detection methods use the ultrasonic distance measuring device with successive scan method. However, the scan method causes a theoretical error and it couldn't estimate accurate obstacle distances. The proposed synchronous firing method use the plural number of ultrasonic sensors which emit ultrasonic wave simultaneously and estimate the distance to the closest obstacle relatively accurately. We analytically analyzed the errors of the conventional and proposed methods and compared the quantitative differences of the errors. The differences verified by obstacle search experiments. Using the proposed ultrasonic wave synchronous firing method, 3 dimensional obstacle location estimating device was designed and implemented. The results of the 3 dimensional obstacle detecting experiments showed the proposed method had good performances and it would be sufficiently use in the guide system for the people who are visually impaired.

Development of Walking Assistant Controller for Patients with Weakness in Cardiopulmonary System (심폐기능 허약자를 위한 보행보조장치 제어기 개발)

  • Kang, S.J.;Kim, G.S.;P, S.H.;Mun, M.S.;Sei, S.W.;Kim, J.K.;Ryu, J.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • Case of patients with weakness in cardiopulmonary system, other ambulatory function is normal, but oxygen supply function is problem. So they need reduce energy consumption for gait by assistance system. In this study, we designed and developed walking assistant device which helps flexion and extension of hip joint for cardiopulmonary patients. There are two motors, each at the left and right side of pelvis, providing torque to the hip joint. The target angle of the flexion and extension in the hip joint is set according to the normal gait. As a result, reduction of energy consumption was 14.8% by gait assistive device.

Comparison of Immediate Feedback in The Sitting Position of A Normal Adult and The Spine Angle in Two Other Sitting Conditions

  • Jinhyung Choi;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.327-333
    • /
    • 2023
  • Objective: The purpose of this study was to investigate the effects of wearing an immediate vibration feedback device at the lumbar region on the spine angle in a sitting position. Design: Cross-sectional study. Methods: The subjects were 28 healthy university students who were randomized to three interventions. Each condition (A: in a normal chair with an immediate feedback device, B: on the gym ball, C: in a normal chair) spent 10 minutes watching the video, and the order of the experiments was randomized, and the measurements were taken consecutively. Results: The results showed significant differences in cervical and thoracic angles between conditions and time. Post hoc tests showed no difference at 1 minute, but significant differences at 5 and 10 minutes. Conclusions: In conclusion, all angles increased over time in all conditions, but the condition of wearing an immediate vibration feedback device with a lower increase was more useful in maintaining spinal angles than the other two conditions. This study suggests that immediate vibration feedback devices may be an alternative to prevent the loss of spinal angle in occupations and environments with prolonged sedentary postures, and further research is needed to investigate the effectiveness of prolonged application.

EMG Activities of Core Muscles During Bridging Exercises With and Without a Pilates Resistive Device

  • Kim, Su-Jin;Yoo, Won-Gyu;Kim, Min-Hee;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.14 no.4
    • /
    • pp.21-27
    • /
    • 2007
  • The purposes of this study were to compare core muscle activities with and without the use of Pilates resistive equipment during bridging exercises and to investigate the efficacy of a Pilates device. Fourteen healthy individuals (6 males, 8 females) between 20 to 26 years of age were examined. They were engaged in a bridging exercise with and without a magic circle. Three consecutive repetitions of each exercise were performed. Surface electromyography (sEMG) was used to measure the electrical activities of the right side internal oblique, the adductor longus, the multifidus, and the gluteus maximus muscles. Normalized EMG activities were compared using a paired t-test and the level of significance was set at =.05. The results showed that the EMG activities of the internal oblique (p=.0078), the adductor longus (p=.0007), and the gluteus maximus (p=.0001) muscles were significantly higher when using the magic circle during the Pilates bridging exercise. Also, statistically significant change existed in the multifidus muscle (p=.0106). The bridging exercise, combined with hip adduction using the magic circle, may enhance core stabilization. Therefore, using a magic circle during hip adduction combined with bridging exercise may be recommended usefully for individuals wanting to strength the core muscles. Further research is needed to access the nature of motor control of the Pilates mat exercises and to deliver exercise intervention for lower back pain patients.

  • PDF

Difference in Muscle Activity of Deltoid Muscle according to Isokinetic Range of Motion Using Proprioceptive Neuromuscular Facilitation Pattern of Upper Extremity

  • Rhee, Min-Hyung;Choi, Su-Hong;Lee, Sang-Yeol;Ha, Kyung-Jin;Yoon, Sung-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.5
    • /
    • pp.278-281
    • /
    • 2022
  • Purpose: This study sought to compare the muscle activity of the deltoid muscle according to the range of motion during the proprioceptive neuromuscular facilitation (PNF) upper extremity D2 pattern exercise performed with an isokinetic exercise device. The aim was to provide basic data for selecting an exercise for the relevant segment of the range of motion to enhance function in clinical practice. Methods: In this study, the relevant measurements of the anterior and middle trapezius of 25 healthy adults were taken using a surface electromyography system. The upper extremity pattern exercise was performed in three ranges (0% to 50%, 50% to 100%, and 25% to 75%) using the upper extremity isokinetic device. Results: There was a statistically significant difference in the muscle activity ratios of the anterior and middle deltoid muscles according to the measurement conditions (p<0.05). There was a statistically significant difference in the activity ratio of the middle deltoid muscle according to the measurement conditions in the ratio from the start range to the end range (p<0.05). There was no significant difference in the muscle onset time difference according to the measurement conditions (p>0.05). Conclusion: The muscle activity of the anterior and middle deltoid muscles was analyzed according to the range of motion during the PNF upper extremity pattern exercise performed with an isokinetic device. The results could be used as a basis for selecting exercises for the relevant segment of the range of motion according to the function to be emphasized.

Implementation of Computer Device of 2dimension Input for the disabled Using a Angular Acceleration Sensor (각가속도계 센서를 이용한 장애인용 컴퓨터 2차원 입력장치의 구현)

  • 정상봉;한성현
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.837-840
    • /
    • 1998
  • In this paper, we designed the computer input device for rehabilitation of people with hand disabilities. This input device is made up of two Gyrostar sensors attached in the orthnormal directions of x, y axes. Gyrostar is a sensor for angular Acceleration. This device is attached by the user's head side. Head movement is detected by analysing and processing the output wave signals from the sensors therefore enabling the user to move the mouse pointer that helps to operate the computer. This method does not necessitate a complex hardware or a long installation process, which was formerly the case, and uses real time algorithms which enables simple emulation of a computer mouse. The interface of this device and the mouse are the same.

  • PDF